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1 INTRODUCTION

Until recently, human exposure to air pollutants could be assessed only with
fixed-site ambient monitoring data. Typically, people residing in the same
neighborhood near a monitoring station were treated as homogeneous
receptors fixed at the location of the monitoring station. Recent field studies
with personal exposure monitors (PEM) have found this approach inadequate
for pollutants which are spatially variable or have nonambient sources or
sinks, such as carbon monoxide. For example, during the Washington Micro-
environment Study, commuters were exposed to 9 to 12 ppm CO averaged
over the entire commute route, while at the same time of day fixed-site
monitors in DC logged an average of about 3 ppm CO (Akland et al.,
1985). Nagda and Koontz (1985) observed CO concentrations generally
between the MEM and PM values reported here for comparable micro-
environments. Furthermore, it is important to consider population activities
and mobility when assessing exposure.

Incorporation of population mobility and activities into the exposure
assessment of CO became a practical reality with the development of
reliable, continuous CO PEM's. There are two general approaches to assess
exposure using PEM's. The first is the personal monitoring (PM) or direct
approach in which human subjects are sampled from the target population
and are equipped with PEM's for a defined time to measure directly their
exposures. This approach was taken in the Washington Urban Scale Study.
Advantages of this approach are simplicity of design and freedom from
modeling assumptions. The main disadvantage is cost, which is very high
for large scale investigations.

An alternative approach to assess exposure is the micro-environment type
(MET) or indirect approach in which pollutant concentration data are
combined with or enhanced by activity time data (Ouan, 1982, 1985; Ott,
1982,1984). The MET approach can be implemented either by the enhanced
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personalmonitoring (EPM) method or by the micro-environment monitoring
(MEM) method (Duan, 1985). the latter approach was taken in the
Washington Micro-environment Study during the winter of 1983. In this
approach, a number of micro-environments may be sampled in each MET,
with research staff or trained technicians sent to the sampled micro-
environments to monitor those areas directly.

The MET method combines MET-specified pollutant concentration data
and activity time data to estimate exposures. Further discussion of the EPM
and MEM methodologies is available in Duan (1982, 1985).

2 METHODS FOR ESTIMATING EXPOSURE

The MET concentration data and the activity time data can be combined
in several ways to estimate exposure. For average exposure, one can use
the average time-weighted summation formula:

E = Lk(\ xtk (1)

where E is the average exposure, Ck is the average MET concentration for
the kth MET, and Tk is the average MET time for the kth MET. This
method implicitly assumes that the MET concentrations and MET times are
uncorrelated, a usual implicit assumption for many models (e.g., SHAPE)
of human exposure that rely on the MET approach (Ott, 1982, 1984) and
the convolution method (Duan, 1982, 1985). This assumption in essence
rules out responses to air pollution episodes which might cause people to
stay away from MET's having high concentration during those episodes.

For most purposes, the estimation of average exposure is inadequate:
rather it is necessary to define distributions of individual exposures. A
simulation model such as SHAPE can be used by describing the concentration
and activity data as probabilistic distributions; human activity and concen-
tration data are simulated from those probabilistic distributions, and the
simulated data are 'used to estimate exposures. This type of approach
generally assumes that concentrations and time are independent variables.

The convolution method proposed by Duan (1982, 1985) is another
approach. From the activity data base, persons are paired with days from
the concentration data base to form combined units (i.e., person-days), and
the exposure for each combined unit is estimated using the following time-
weighted summation formula:

Eim = LkCmk Tik (2)

where Eim is the exposure combining the ith unit in the activity data base
and the mth unit in the concentration data base, Cmk is the MET
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concentration for the mth unit in the concentration database in the kth
MET, and Tik is the MET time for the ith unit in the activity data base in
the kth MET.

To illustrate the application of Equation (2), consider a study that has 43
days of MEM data, combined with a sample of 705 persons, each providing
a diary of one day of activity. If the ith person in the activity sample spent
the day according to Tj and was exposed to concentrations Cm in the MET's
encountered during that day, he would receive exposure Eim' Since
independence is assumed between the MET concentrations and times, each
of the 43 concentration vectors Cm is equally likely for each of the 705
participants. With the convolution method, the exposures Ejm are derived
for each of the 30,315 pairings (43 x 705) of persons and days in the two
data bases. Each such pairing forms one combined person-day.

This method requires that the concentration and time be considered
independent. Under this assumption, the distribution of exposures estimated
from the convolution method is an unbiased estimate of the distribution of

actual exposures and is a function of the empirical cumulative distribution
functions for the MET concentrations and the activity times (Duan, 1982,
1985). Because the empirical cumulative distribution function is the efficient
nonparametric estimate for the true cumulative distribution function, the
exposure distribution estimated by the convolution method is also efficient
in the same sense.

Another method can be viewed as a hybridisation between the average
time-weighted summation Equation (1) and the convolution method Equation
(2). With this hybrid method, the average MET concentration is 'used to
estimate the exposure for each unit (day or person-day) from the activity
data base by

Ej = 'i.kCkTjk (3)

This method ignores the variability in exposures between micro-environments
of the same MET. If all micro-environments belonging to the same MET
have the same concentration, this method is preferable to the convolution
method because of its simplicity. If the micro-environments belonging to
the same MET vary substantially, this approach is likely to underestimate
the variability of the exposure distribution.

3 ACTIVITY TIME DATA

A population-based study of CO exposure was conducted during the winter
of 1982-83 in the Washington, DC metropolitan area (Akland et al. 1985).

An area probability sample of human subjectswas enrolled for one day
for each in this study. The participants filled out activity diaries giving the
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activities they were engaged in during each time period. The activities were
entered in the diaries as activity segments, where each activity segment was
defined to be the time period between two reported changes in activities in
the activity diary. Participant exposures to CO were recorded as the average
concentration over each activity segment.

The participants in the Washington Urban Scale Study were selected from
a probability sample. To extrapolate from the sample to the target population,
it is necessary to weight the individual observations by the sampling weights
based on sampling probabilities. In a preliminary analysis, the summary
statistics based on the weighted and the unweighted procedures were
compared. The weighting had no major effect on the results. For example,
the average time spent in car commuting differed by about 2 percent between
the weighted and the unweighted estimates. Because the primary goal of
the comparative study was to compare the estimated exposures based on
the MEM and PM approaches for the observed sample, the extrapolation
to the target population was not crucial. Therefore, to simplify the analysis,
the authors decided not to weight the individual observations.

In the Washington Urban Scale Study, each participant filled out activity
diaries for one day. During this sampling day, whenever there was a new
activity-e.g., the participant stopped reading a newspaper in the living
room (end of an old activity) and went outside for a walk (beginning of a
new activity)-the participant was required to record the start time of the
new activity, and to describe it. The period between two entries in the
activity diary was referred to as an activity segment. Each activity segment
was regarded as one micro-environment.

Based on information available, activity segments were grouped into seven
MET's: parking, public transportation, private car, pedestrian, shops, offices,
and other. The rest of this section gives the heuristic definitions of these
MET's. Further details on these definitions and evaluation of MET
classification schemes are reported in Duan (1985).

The MET parking is restricted to indoor parking, because only indoor
parking concentration data are available from the CO Micro-environment
Study. The MET public transportation includes both bus and metrorail.
Because both buses and metrorails are monitored in the Micro-environment
Study, it is possible to consider them as distinct MET's. However, in the
evaluation of MET classification schemes, (Duan, 1985), it was found
unproductive to distinguish between these two MET's; therefore, public
transportation was considered as one MET without further refinement.

The MET private-car includes private cars, trucks, motorcycles, and vans.
It is debatable whether this MET should be restricted to the narrow
definition including private cars only. (Only private cars were monitored in
the Micro-environment Study.) The four modes of travel were grouped into
one MET for two reasons:

(1) The amount of time spent in trucks, motorcycles, and vans is very



small compared with the amount of time spent in private cars. The top part
of Table 1 gives the average amount of time spent in each of these modes
of travel. The total amount of time spent in the four modes of travel is 1.6
hours per person per day, out of which only 0.11 hours belong to the three
modes other than private car, less than 7 percent of the total;

(2) The MET concentrations based on PEM for those four modes of
travel are roughly similar. The top of Table 2 gives the average concentrations
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Table 1. Activity times for modes of travel and types of shops

MET Modeffype Average time (hr.) Fraction of MET
('Yo)

Car Car 1.517 93.47
Truck 0.069 4.25
Motorcycle 0.002 0.12
Van 0.035 3.16

TOTAL 1.623 100.00

Pedestrian Walking 0.254 94.42
Jogging 0.007 2.60
Biking 0.008 2.97

TOTAL 0.269 100.00

Shops Stores 0.369 96.09
Malls 0.015 3.91

TOTAL 0.384 100.00

Table 2. Average concentrations for modes of travel and types of shops

MET Modeffype Na Average conc. SEb
(ppm)

Car Car 592 5.1 0.22
Truck 22 6.3 1.67
Motorcycle 1 3.0
Van 7 2.1 0.79

Pedestrian Walking 220 2.3 0.16
Jogging 6 2.3 0.78
Biking 5 4.0 0.82

Shops Stores 225 2.2 0.17
Malls 11 1.8 0.54

a The number of participantswho used this mode/typeduring the samplingperiod
b Standard error of the average concentration
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with standard errors. The difference between car and truck is small (about
1 ppm) and statistically insignificant. The difference between car and van
is larger (about 3 ppm) and is statistically significant, but only seven people
reported using a van in their travel.

The MET pedestrian includes walking, biking, and jogging. It is debatable
whether jogging and biking should be grouped with walking into one MET.
Table 1 shows that the amount of time spent jogging and biking is very
small. The difference is concentrations between walking and jogging is very
small (less than 0.1 ppm) and statistically insignificant (t = 0.09). The
difference between walking and biking is about 2 ppm and is statistically
significant (t = 2.09). However, only five people reported biking during the
sampling period. Therefore, they are combined into one MET.

The MET shops consist of the activity segments reported as stores,
shopping malls, and theaters in malls. The amount of time spent in the
malls is small (less than 5 percent) relative to the time spent in stores. The
difference in concentration is very small (less than 0.5 ppm) and statistically
insignificant (t = 0.65). Therefore, they are combined into one MET.

The MET offices category consists of activity segments reported as offices.
The MET "other" is a residual category for activity segments not considered
above. The main component of activity segments in this MET is home.
Because there are no micro-environment monitoring data corresponding to
these activity segments in the Micro-environment Study, this MET cannot
be refined any further.

4 CO CONCENTRATION DATA

The Washington Micro-environment Study was conducted in the Washington,
DC, metropolitan area during the winter of 1983. Primarily, the study
focused on the measurement of commuting micro-environments, including
parking garages, driving an automobile, riding a bus, riding a train, and
walking. The study design and some preliminary results from the study are
given in Flachsbart et at. (1987). Data acquisition methodology is presented
in Fitz-Simons and Sauls (1984).

For automobile commutes, the study identified eight routes that "collec-
tively extend 150 miles, about 8.1 percent of the total length (1,853
miles) of Washington's arterials and freeways." (In 1980, the Washington
metropolitan area had 9,432 miles of streets and roads, including arterials,
freeways, and locals). The routes were selected to "have high expected
commuter CO exposure as predicted by Flachsbart's indicator" (Flachsbart
et ai., 1987).

Although the routes might be representative of the arterials and freeways,
they might not be representative of all routes traveled by the general
population. The empirical analysis found that for the commuting MET's,
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the MET concentrations from the Micro-environment Study were substan-
tially higher than corresponding MET concentrations based on personal
monitoring from the Urban Scale Study.

A Commuter Study Links Data Base was constructed from the commuting
part of the Micro-environment Study. Each commuting route was divided
into links ranging from one-half to three miles, each link being a physically
distinct segment of the route, and is regarded as an individual micro-
environment.

For quality assurance, several commuting trips used co-located monitors
or inside/outside pairs. Preliminary results on monitor accuracy and monitor
precision were given in Flachsbart et al. (1987). In the paired situation, this
study restricts attention to the primary monitor.

The ME study included monitoring on some indoor micro-environments-
shopping centers and offices. Additional monitoring was conducted on
walking micro-environments. The pedestrian data were combined with those
from the commuting part of the study and analyzed as belonging to the
same MET.

The ME study was not a comprehensive coverage of all micro-environments
commonly encountered. One major exclusion was the home micro-
environment. A residual MET, referred to as the MET other, consists of
all micro-environments not covered in the Micro-environment Study. Since
there are no MET concentration data collected for this MET in the ME
study, we use the personal monitoring data from the Urban Scale Study for
this MET. In other words, we treat the part of the personal monitoring
data corresponding to the MET other as an additional part of the Micro-
environment Study, and use these PM concentration data as the MEM
concentration data for this MET.

5 OBSERVED MET CONCENTRATIONS

5.1 CONCENTRATIONS BASED ON MEM

For each MET, except the MET other, the measurements from the Micro-
environment Study are aggregated into daily averages, which are used as
the MET concentrations in further analysis. A total of 43 days were measured
during the period from January 1 through March 18, 1983.

Table 3 gives the summary statistics for the MET concentrations for the
six MET's. As expected, the concentrations in parking garages were very
high. The average concentration exceeded the one-hour federal standard

level of 35 ppm. The concentration in private cars was also fairly high. The
average concentration exceeded the eight-hour federal standard level of 9

ppm. Public transportation, walking, and shops had moderate levels averaging
al50ut 5 ppm. Offices had low levels, averaging about 2 ppm.
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Table3. Summary statistics for CO MET concentrationsbased on MEM

MET Meana SDb

Parking
Pedestrian
Public
Private car
Shop
Office

44.55
4.95
5.34

11.39
4.20
2.29

32.36
2.07
3.12
3.11
1.54
0.86

a Average of the MET concentrations given in ppm.
b Standard deviation of the MET concentrations given in ppm.

5.2 CONCENTRATIONS BASED ON PM

An alternative set of estimates of MET concentrations was derived from

the personal monitoring data in the Urban Scale Study. For each activity
segment reported, the exposure for that activity segment was computed as
the product of the duration of the activity segment and its average CO
concentration. For each participant and for each MET, the exposures from
the activity segments belonging to that MET are summed as the total
exposure for that MET. The total exposure in the MET was divided by the
total amount of time (hours) in the MET to get the average MET
concentration.

For certain activity segments, the CO concentrations were unavailable,
possibly because of monitor failure. Those activity segments were not
included in the calculation of the MET concentrations. To assess the effect
of those missing data, the amount of time belonging to such activity segments
was calculated for each participant and for each MET. For three MET's-
namely, shops, parking, and public transportation-none of the participants
had any activity segments with missing CO concentration data. For the other
three MET's, some of the activity segments had no CO concentrations.
However, the amount of time for those activity segments is very small. For
the MET private car, the average amount of time per participant for which'
CO concentration was missing was 0.004 hours. This is less that one-half of
1 percent of the average time of 1.6 hours spent in this MET. For the MET
office, the average amount of time without CO concentration is 0.001 hour,
again very small compared with the average time of 0.269 hours in this
MET. Missing concentration data are, therefore, of very little effect.

Table 4 summarises statistics for the average MET concentrations based
on personal monitoring.
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Table4. Summary statistics for CO MET concentrationsbased on PM

5.3 COMPARISON OF MET CONCENTRATIONS

The MET concentrations based on PM were substantially lower than the
corresponding MET concentrations based on MEM, especially in the
commuting MET's (See Tables 3 and 4). The most dramatic difference of
all was the MET parking, in which there is a fourfold difference between
PM and MEM. The average MET concentration for private cars based on
MEM is more than twice the corresponding average concentration based on
personal monitoring. As was noted in Section 4, the lack of representativeness
in the commuting routes might contribute to this discrepancy. The monitor
battery run down might also be a contributing factor, as was noted in
Wallace et al. (1988).

6 COMPARISON OF ESTIMATES OF EXPOSURE
DISTRIBUTION

The comparison between the two sets of summary statistics for the estimated
exposures shown in Table 5 indicates that the two distributions are
substantially different. The average MEM exposure is about 40 percent
higher than the average PM exposure. The difference is highly significant

Table5. Summariesfor MEM and PM exposures

Skewc Kurtd

9.47
9.39
3.11

175.0
114.4
16.7

, Average of the estimated exposures in ppm-days.
b Standard deviation of the estimated exposures.
C Skewnessof the estimated exposures.
d Kurtosis of the estimated exposures.
e MEMexposureusingtheconvolutionmethod.
r MEM exposure using the hybrid method.

MET Mean SD

Parking 9.60 12.6
Pedestrian 2.29 2.35
Public 3.10 2.65
Private Car 5.08 5.18
Shop 2.19 2.47
Office 1.82 2.73

Method Mean" SDb

MEM-ce 2.29 2.22
MEM-Hf 2.29 1.63
PM 1.59 1.63
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(t = 6.69 for the convolution IJlethod, t = 8.01 for the hybrid method). The
two-sample Kolmogorov-Smirnov test (Smirnov, 1939; Massey, 1951) for
the difference between the MEM and PM exposure distributions is also
highly significant (P<0.OOOOOO1for both methods).

The comparison between the summary statistics for the logarithm of the
estimated exposures also indicates major differences between the MEM and
PM exposures. The average log MEM exposure is significantly higher than
the average log PM exposure.

For certain situations, such as qualifying the health effects of air pollution,
it is on.ly necessary that the estimated exposure be an accurate predictor of
actual exposure. In such instances, the appropriate way to assess the validity
of the estimated exposure is to examine the regression relationship between
the actual and estimated exposures. The slope coefficient in the regression
relationship must be significant, indicating that the estimated exposure
predicts the ranking of actual exposures, even though the magnitude might
be inaccurate. Furthermore, the slope coefficient should be close to one,
and the intercept coefficient close to zero, implying that estimated exposures
are approximately equal to actual exposures.

As usual the actual exposures are unknown; therefore, one cannot
determine the relationship between the estimated exposures. and the
unobserved actual exposures. The PM exposure is used as a benchmark;
the regression relationship between the two estimated exposures is tested,
regressing the PM exposure on the MEM exposure.

The results (or the regression of PM exposures on the MEM exposures
are shown in Table 6. On the untransformed scale, the regression results
show a very significant relationship between PM and MEM exposures. The
convolution method gives a more significant slope coefficient than the hybrid
method. This indicates that even though the MET concentrations from
MEM and PM are substantially different, MEM exposures are still useful

Table 6. Regression of PM exposures on MEM exposures (t-statistics given in
parentheses)

Method

Convol

Hybrid

R2
Scale Intercept Slope (Percent)

Original 0.528 0.466 39.9
(7.70) (21.64)

Log -0.601 1.053 61.3
(19.35) (33.44)

Original 1.011 0.254 6.4
(9.84) (6.94)

Log -0.667 0.879 8.4
(7.39) (8.02)
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for predicting the ranking of PM exposures. In other words, if an individual's
MEM exposure is high, it is reasonable to expect that his PM exposure
would also be high. The R2 statistic for the convolution method is about 40
percent, indicating that the MEM exposure is not only a significant predictor
for the PM p,:xposurebut is also an informative one, explaining an important
fraction of the variability in the PM exposure. The hybrid method has a
much smaller R2. With the convolution method, the slope coefficient is
about 0.5, and the intercept coefficient is about 0.5 ppm. For simplicity,
the estimated regression model may be approximated as follows:

PM exposure = 0.5 + 0.5 x MEM exposure (4)

At levels less than 1 ppm, the MEM exposure underestimates the PM
exposures. For example, for an individual with MEM exposure equal to
zero, the regression model predicts that his actual exposure is probably
about 0.5 ppm. At levels more than 1 ppm, the MEM exposure overestimates
the PM exposure. For example, for an individual with MEM exposure equal
to 10 ppm, the regression model predicts that his PM exposure is probably
about 5.5 ppm, substantially lower than the MEM exposure. Because the
average MEM exposure is about 2 ppm, for most people the MEM exposure
overestimates the PM exposure in accordance with the regression model.

On a logarithmic scale, regression results show a significant relationship
between MEM exposure and PM exposure, indicating that the MEM
exposures successfully predict the ranking of PM exposures (see the "log"
rows in Table 6). The R2 statistic for the convolution method,is about 60
percent, indicating that the log MEM exposure is fairly powerful to explain
an important fraction of the variability of the log PM exposure.

With the convolution method, the slope coefficient in the logarithmic
scale regression is near one, the difference not being statistically significant
at the conventional 5 percent level (t = 1.68). This indicates that the span
of the MEM exposures is well-calibrated relative to PM exposures. The
intercept coefficient is about -0.6 log (ppm-day), significantly less than zero,
indicating that MEM exposure consistently overestimates PM exposure.

7 DISCUSSION

Methods for estimating population CO exposures using micro-environment
monitoring (MEM) data, personal monitoring (PM) data, and activity data
have been presented, and results compared.

MEM exposures averaged about 40 percent higher than exposures
estimated by the PM method. The observed difference in the estimated
distributions is probably specificto these data, and mightnot be generalizable.

Given problems in sampling micro-environments and those associated
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with personal monitoring, it is remarkable that MEM exposure is a successful
predictor of PM exposure. The convolution method is preferable to the
hybrid method for these data due to the high variability of MET
concentrations.

For future studies applying the MEM approach, probabilistic sampling
techniques are necessary to select micro-environments in each MET to be
monitored. For some MET's such as homes and shops, standard area
probability samples would be sufficient. For some MET's such as commuting
routes, the appropriate sampling techniques remain to be developed. It is
also crucial that the MET definitions in the activity pattern data and the
MET concentration data match closely. For example, if the MET private
vehicle in the activity pattern data included both sedans and bikes, the
MET concentration data should be collected for both. Otherwise, say if
concentration is only collected for sedans, the micro-environments monitored
for this MET would be biased: i.e., some micro-environments (bikes) in
this MET are excluded from the sampling frame. Both the failure to use
probabilistic sampling techniques and the mismatch in MET definitions are
plausible factors resulting in the discrepancy between the MEM and PM
exposure estimates. The mismatch in MET definitions are minor; therefore,
sampling bias, especially in the MET parking and MET private-car, might
be more important.

In summary, exposure estimates based on monitoring carbon monoxide
in micro-environments were compared to exposure estimates based on
personal monitoring. Methods of estimation were reviewed and discussed,
and results of estimation presented. These data indicated that population
exposure estimates based on data from the Washington Microenvironment
Study, combined with people's activity data from the Washington Urban
Scale Study, were about forty percent higher than estimates based on
personal monitoring data from the Urban Scale Study. The former set of
exposure estimates was found to be a good predictor of the latter.
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