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1 INTRODUCTION

A compartment is defined as a well-delineated biotic or abiotic entity, e.g.,
the A-horizon of the soil, the canopy in a forest, or the sediment of a lake.
In the following discussion, models will be presented that conform to this
definition by providing a mathematically simple treatment of the very
complex flow of a pollutant through an ecosystem.

The simplification of compartment models exists because distribution
inside a compartment is not included. The basic assumption is that a chemical
will be homogeneously mixed inside a compartment, resulting in knowing
everything about a system's behavior, when the inflow and outflow for each
compartment are identified.

In working with compartment models, two fundamental problems need
to be addressed: (1) the identification of each relevant compartment; and
(2) estimation of flows among compartments.

The second issue, namely the estimation of the flows between compart-
ments, is usually the most difficult to resolve, since data often are so scarce
as to give unreliable estimations of the parameters in a model. A method
to overcome this problem is to indicate that the dynamic behavior of the
system is unimportant, and that the total loading or intake during all times
in each compartment are deterministic. This approach is called time-
integration, or dose-commitment.

The dose-commitment method was originally proposed by Lindell (1960;
1978) in connection with prediction of radioactive fall-out from nuclear
bomb testing. This method was also used by UNSCEAR (1977). Later this
method was developed into a more general approach for chemicals introduced
in the environment (MARC, 1977; Barry, 1979; O'Brien, 1979; Miller and
Buchanen, 1979).

The objective of the dose-commitment method is to estimate the total
loading of a pollutant in each compartment of the system under consideration.

If the input flux from the environment at a given time t to compartment
j is given by Foit), and if it is assumed that the compartment does not
receive any amount of a pollutant from any other compartment in the
system, then the total loading or intake to the compartment is given by
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Ij = Ix Foit) dt
0

(1)

If the concentration in compartment j is given by xit), then the exposure
in compartment j is given by

Ej =r Xit) dt
(2)

Consider the following simple compartmental system. The amount injected
into compartment 2 at a small time interval dt is given by F12Ct)dt.Focusing
on this increment of loading into compartment 2, then at a given time later
than t, (e.g., t + s, S 2': 0), the following is obtained

Rz(s) Fdt) dt (3)

where Rz(s) is called the retention function of compartment 2. This function
is defined for each compartment and fulfills the following conditions:

(a) Rj(u) = 0 for U < 0

(b) RiO) = 1

(c) Riu)::; Riv) if u > v

(d) Rj (+00) = 0 if and only if Cj is not a sink

(4)

By using the flux into compartment 2 and the retention function of
compartment 2, the amount of pollutant in compartment 2 at a given time
t is calculated as

Qz(t) = L Rit-s)F12(s)ds
(5)

The concentration in compartment 2 is denoted Xit), and this can
accordingly be calculated as

Xit) = Qz(t)/Mz (6)

where Mz is defined as the mass of compartment 2, which then gives

Xz(t) = Mz L Rz(t-s)F12(s)ds
(7)

If the flux from compartment 1 to compartment 2 is linear and donor
controlled then
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Xl (t)

F12(t) = K12Ql(t) = K12 Ml
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(8)

which gives

M2K12

i
t

X2(t) = - M - = R2(t-S)Xl(S)ds
1 0

(9)

If we define the following as the transfer function between compartments
1 and 2:

M2K12

T12(t) = ~ R2(t)
(10)

then

X2(t) = L Tdt-s)Xl(s)ds
(11)

From these preliminary formulas, the formulas for exposure and intake
into the compartments can be defined. The exposure in compartment 1 is
defined as

£1 = rx Xl(t)dt
Jo

(12)

while the intake from compartment 1 to compartment 2 is given by

112 = r Fdt)dt
(13)

By using equation (9), the exposure commitment to compartment 2 is
found to be

£2 = rx X2(t) = rx rt Tdt-s)Xl(S)ds dt
Jo Jo Jo

(14)

if the integration variables are shifted to u = t- s, v = s, and if it is noted
that Tdt-s) = 0 for s > t which permits integration to infinity in the inner
integration we obtain:

£2 = r r Tdu)Xl(V)dv du
(15)
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- r Tl2(u)dur Xl(v)dv

= Tl2El

where the transfer coefficient Tl2 is defined as

T12 =r Tdu)du

As defined earlier, the transfer function is up to a proportionality constant
identical to the retention function. In other words, if the retention coefficient
is defined as

(16)

Rz =r Rz(s)ds

then the following relation between the transfer coefficient and the retention
coefficient is found:

(17)

MzK12 Rz
Tl2 = M1

(18)

The retention coefficient has a well-defined physical interpretation, since it
is the mean residence time in the compartment (O'Brien, 1979).

By integrating the formulas and shifting the integration variables, the
following formula is derived:

Ez = (ooXz(t)dt
Jc)

1

I
'"

I
t

= M RzCt-s)Fl2(s)dszoo

1 ('" (oo

- Mz Jo R(u)du Jo Fds)ds

(19)

RzI12

= Mz

By means of this formula, a relation between the exposure commitment
and the intake commitment is established.

In a steady state situation, when X;(t) = X;t, equation (13) cannot be
used, since the integration in both numerator and denominator will take
the value +cc. If equation (9) is used, one obtains
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X~ = L T12(t-S)Xfds
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(20)

and if t ~ +00 in this equation, the following relation is obtained for the
transfer coefficient in the steady state situation:

T12 = X~/Xf (21)

The underlying assumptionduring the calculationsleading to the formulas
(14), (16), (17), and (19) is that the compartmental model is linear and
donor controlled.

For a longer sequence of compartments, it is possible to derive transfer
coefficients, according to the means of connecting individual compartments.
The following three examples illustrate this point. For example, under steady
state assumptions and by repetitive use of equation (19), it is possible to
derive the following formula:

Tij = Tj-Ij Tj-2j-I' . . Ti+1.i+2 Ti,i+1 for i<j (22)

which works as a definition for the transfer coefficient between compartment
i and compartment j, when the compartments are connected in a chain. The
transfer coefficient between compartment 1 and compartment n can be
estimated if the steady state concentrations of the two compartments are
known.

In the second example, a more complicated compartmental structure is
introduced. A situation is examined where some of the material between
compartments 2 and 3 is going through another compartment. Assuming
steady state conditions,

X~ = TdT23 + T24T43)Xf (23)

which could be referred to as a situation with parallel pathways (O'Brien,
1979; Miller and Buchanen, 1979).

In both examples, the steady state concentration in each compartment
could be replaced by the exposure commitment, if the pulse of given
pollutant is used. In the next section, the dynamic behaviour of the
compartmental system of example 2 will be considered.

The following is an example in which a loop is present in the compartmental
system. In this example, it is necessary to take into consideration that some
of the pollutant is recycled through compartment 5.

It is found that

T23 T34Xj'
X~ = T121- T23T3STs2

(24)
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T14 X*- 1
- 1 - T23T3STs2

This relation is established by noting

X3 = T2~i (25)

Xi = T12Xj + T3sTS2X3

which gives

X3 = T23T12Xj + T23T3sTS2X3 (26)

and the relation is easily found. Thus, it is possible to derive relations
between the steady state concentration or exposure commitment and the
transfer coefficients, for a given compartment system under consideration.

The time-integrated approach proves useful in cases where the interest
lies not in the dynamics of the system, but rather in overall intake or loading
to the compartments in the system. The exposure commitment, the transfer
coefficients, and the intake commitments to each compartment prove to be
key parameters, and these can often be estimated in cases where data are
too scarce to allow estimation of the parameters in a more detailed dynamic
model. In cases of steady state, the concentration in each compartment can
be used to estimate th~ transfer coefficient between compartments, even in
rather complex systems where recycling occurs.

In some instances, however, it is impossible to ignore the dynamic
behaviour of a system. This is the case if the system is unaffected by the
total input of a pollutant, but what matters is whether or not the concentration
in a specified compartment reaches levels beyond a certain critical level. In
this case, the requirement is to identify not the total loading to a compartment
(which could be +00 without harm) but the peak value.

2 TIME-DEPENDENT COMPARTMENT MODELS

The idea of using compartment models to describe the dynamics of "matter"
through a series of "black boxes" is not new. The first examples of utilising
this approach dates back to the 1920's (Hevesey, 1923).

Around 1960, this approach began to develop very quickly, aided by the
evolution of computers. Standard textbooks on compartment models include
those by Atkins (1969) and by Jacquez (1972). Numerous textbooks
developed the theory for employing compartment models to model the
dynamic behaviour of pollutants in ecosystems (Butler, 1978; Neely, 1980;
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Dickson et at., 1982) or to describe the biogeochemical cycles in an ecosystem
(Hutzinger, 1985).

Consider in a general n-compartment system, where for each pair of
compartments (i, j), i =1=j, following possible flows can be estimated. The
basic equation for the transfer between the compartments is given as

dxi = i Fji(t) - i Fij(t)
dt j=O j=O

j*i J*I

(27)

This basic mass balance equation provides an introduction to the
deterministic compartment models. It says that when the initial concentration
of each compartment is given, everything about the dynamic behaviour of
the system in the future is known.

The simplest possible model is obtained by assuming that the input from
the exterior is constant with time, and that the flow between each
compartment is linear and donor controlled:

Fij(t)= FOj if i = 0

if i =f 0

(28)

- k.x (t)IJ I

which gives the following equations:

dx. n n

d: = FOj+ ~l kijXi(t) - (~o kij)xj(t)
(29)

This equation can be made more compact by utilising a matrix notation:

dx
dt=Ax+B (30)

where

Xl

X2

X3 dx

dt

dxj/dt
dx2/dt
dx3/dt

FOI

F02

F03

x= B= (31)

Xn dxn/dt Fan

and A is a matrix with elements aij = kjj outside the diagonal end:
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n

Q..:= - '" k..
lJ L lJ

j~O

(32)

It is has been proved in Jacquez (1972) that under these conditions, a
steady state exists, and is given by

X* = -A-IE (33)

In the case of zero input into the compartments (e.g., when the system
under consideration consists of a pulse to one or more compartments at
time t = 0, and the effect of this pulse on the other compartments is
studied), then it is simple to give the dynamic behaviour until steady state
is achieved. If it is assumed that A has distinct eigenvalues (1'1, Az, , An)
with corresponding eigenvectors (CI, e_z, ,e-n), the solution is provided
by

n

x(t) = 2: Ci ei e";l
i~l

(34)

where Ci is determined by the initial conditions.
In the case of non-zero input to some of the compartments, it is also

possible to find analytical solutions which give the dynamic behaviour until
steady state is achieved, although the solution will look more complicated
than the one given above (Jacquez, 1972; Gydesen, 1984).

The use of linear compartment models has developed considerably during
the 1970s. A review of this type of model is given by O'Neill (1979). An
obvious way to generalise the model, would be to let the coefficients in the
linear model be time-dependent. This model could be used in situations
where it is known that the flow into different compartments will show a
time-dependent pattern, e.g., a fading input into a compartment after
regulation of a chemical. Another possibility would be to make the model
non-linear, such as,

2~~ = Foz + K12XIdt (35)

or perhaps a combination of these two approaches. The rule is when such
generalisations are introduced, it is impossible to find the analytical solution
provided by a linear compartment model. The equations have to be solved
by use of numerical techniques. These aspects of compartment modeling
are also covered by Jacquez (1972).

Another type of generalisation is to introduce some periodic functions for
flow coefficients such as,

Kij(t + T) = kiit) t 20 (36)
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where 'Tcan represent a day or a year when diurnal or yearly variations are
studied. This equation represents seasonality in the model and is covered
by Yakubovich and Sturzinskin (1975).

The possibility of introducing some kind of stochastic properties in the
model also exist at three levels: (1) probabilistic transfer of the individual
particles between the compartments; (2) randomly varying flow coefficients
due to random variations in the environment; and (3) random variations in
data due to measurement errors. Whether it is necessary to take one or
more of these sources of random variability into account in a given situation
has to be judged individually. Reviews of these models have been published
by Matis and Wehrly (1979) and Purdue (1979).

Rather than producing generalisations of the model, the model can be
simplified. The most obvious way to do this is to reduce the number of
compartments. This is usually referred to as lumping or aggregation of
compartments. Since every chosen model formulation consists of a compro-
mise between a highly complex and the simplest model, lumping of
compartments becomes central. Conditions for lumping compartments in
the linear compartment model with constant coefficients has been addressed
elsewhere. The more general problem of non-linear compartment models,
and how to estimate the error introduced by lumping has been described
by Co belli et at. (1979) and Cole et at. (1983).

As an example of how the linear compartment analyses work in practice,
let us reconsider a compartmental structure discussed in the preceding
section. If it is assumed that a pollutant is released as a pulse to compartment
1, and that the level of the pollutant is zero at time zero in the other
compartments, then we have the initial conditions:

x;(O) = So X2(O) = X3(O) = X4(O) = 0 (37)

Furthermore, if it is assumed that the compartmental system is governed
by the linear donor controlled model, then the following set of equations
prevails:

(38)
dxl
dt = -k12Xl

dx2
-dt = k12Xl - k24X2 - k2¥2

dx3
dt = k2¥2 + k4¥4 - k3(-,:K3

dx4

dt = k24X2 - k4¥4
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To study the dynamic behaviour until the system returns to its original state,
the differential equations have to be solved. Usually the solution is found
by noting that the eigenvalues for the matrix are given by

"Yl= -k12 "YZ = -(k23 = kZ4) "Y3=-K3o "Y4 = - K43 (40)

The corresponding eigenvectors, ej, are found by solving the equation

Ax - "Yit (41)

with respect to x for each eigenvalue.
since all eigenvalues are less than zero, it is seen that

x(t) ,. 0 for t ,. +00 (42)

which means that the level in each compartment returns to its original state
after some time has elapsed.

This example shows that the dynamic approach makes it possible to
describe how the compartmental system approaches a steady state. In the
linear donor controlled case, it is even possible to provide an analytical
solution. It is also clear that this description of the dynamic behaviour is
obtained by employing more complicated mathematics than the simple
methods used in the time-integrated approach.
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