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1 INTRODUCTION

The mathematical modeling of chemical fate in surface waters has four
purposes: (1) description of the problem; (2) parameter identification; (3)
prediction of time evolution problem; and (4) management. The mathematical
models are categorised in two families according to scale: global and local.
Global models are further subdivided into black box and grey box.

Black box models represent the water body as a system with no
assumed physical structure, considering only inputs and outputs which are
mathematically related usually by a convolution equation or by an ordinary
differential equation (e.g., a mass balance dilution equation). These
oversimplified models generally provide a first approach to the phenomenon.
Grey box models represent the water body as a system with a few structural
properties. An example of such a model is a sequence of reservoirs with
various mixing properties.

The local models are structural, accounting for the various features of
contaminant transport and physico-chemical transformations and interactions:

(1) convection (or advection) of contaminants (i.e., its movement with
the mean flow);

(2) dilution of contaminants with inflowing water;
(3) removal of pollutants in particulate form by sedimentation;
(4) dissolution of gases or of soluble parts of contaminants;
(5) biochemical or physico-chemical reactions of contaminants with

their environment (biodegradation by microorganisms, adsorption/desorption
on sediments, chemical transformation, precipitation when the solubility
threshold is exceeded, coprecipitation of secondary components with the
primary precipitate when the newly formed precipitate provides a large
reactive surface for simultaneous adsorption of these components); and

(6) radioactive decay.
Local models are usually based on a set of partial differential equations;

sometimes they consist of a mixture of structural and grey box models.
The choice of a model depends upon the objectives of the study, its
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constraints (financial, technical, time) and the available data (scarcity,
accuracy). We shall describe various recent models in both families and try
to estimate their limits of use.

2 GLOBAL MODELS

The basis of global models is the mass conservation principle relating inputs
and outputs of the system, taking into account the reactions within the
system that either increase or decrease contaminant concentrations or
masses. Most models are adapted from Streeter-Phelps equations predicting
the biochemical oxygen demand (BOD) and dissolved oxygen (DO)
concentrations or deficits resulting from the discharge of biodegradable
organic wastes into river systems, and completed by simple decay, dilution
or sedimentation models for other contaminants.

2.1 DO AND BOD MODELS

Under the assumptions that, for most flowing streams, diffusion effects are
negligible and that conditions change slowly enough over time compared to
reaction rates that the concentrations remain close to their current steady
state, Streeter-Phelps steady state equations are used, the general form of
which is

dD = u dD = (K1 + K3) L - K2Ddt dx (1)

where D represents the oxygen deficit at the downstream distance xeD =
oxygen at saturation - actual oxygen content), Kl the BOD reaction rate
determined in the laboratory, K2 the reaeration coefficient, K3 the coefficient
expressing the effects of organic settling and other parameters, L the
oxidisable organic matter (ultimate BOD) present at any time t, u the mean
stream velocity, (K) + K3)L the rate of deoxygeneration and - K2 D the
rate of reoxygenation.

The second member of this equation can be completed by terms expressing
addition or removal of oxygen, such as the difference between photosynthetic
oxygen production and respiratory demand by algae and other plant life,
benthal oxygen demand or ultimate nitrifying oxygen demand.

Simple in its form, this equation is subject to difficulties due to the
estimation of its parameters: Of the reaction rates, only K) can be accurately
determined in the laboratory by the BOD tests; K2 is usually estimated by
one of a number of different formulas relating the physical characteristics
of the stream (velocity, depth, etc.) to reaeration and giving different results;
K3 is usually uncertain and often assumed to be zero; these coefficients will
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vary over distance along the stream (30 to 35 percent average variation
(Harrison, 1980».

The usual modeling technique consists in (1) obtaining DO, BOD, flow
values in the stream and other parameters like NH3 for some dates and at
some sampling stations; (2) assuming values for K}, K2, and other variables
such as the sedimentation/resuspension situation and the nitrification
situation; and (3) verifying the assumed values on a second set of data. The
model is then considered ready for forecasting (Whipple and Hunter, 1981).

The estimation of coefficients K1, K2 and K3 is a subject for investigation.
Among recent methods (Wen et aI., 1981) which, when applied to tidal and
nontidal streams, enabled the identification of five water quality parameters
(the reaeration coefficient K2, the coefficient K3, the rate of organic addition
to the overlying water from the bottom deposits as well as local run-off,
the oxygen production rate by photosynthesis, and the longitudinal dispersion
coefficient when the stream velocity, the downstream distance, the stream
water temperature, the BOD and DO at each sampling station and Kl are
known).

The uncertainty of the coefficients K1, K2, K3 will be treated either by a
sensitivity analysis of the Streeter Phelps model with its coefficients and
initial conditions varying within known bounds (Harrison, 1980) or by
assuming that the model is probabilistic, i.e., a random differential equation
with random coefficients and initial conditions (Padgett, 1978 in Harrison,
1980).

Because of fluctuations in time of the reactions adding or removing oxygen
the steady state models are not accurate, and a more general mass balance
equation can be introduced. For instance Deb and Bowers (1983) modeled
the diurnal change of DO (in a stream where photosynthetic activities of
plants are prominent, the DO concentration of stream water changes with
the hour of the day) by the equation:

ae ae
- + u-a = K2(Cs - e) - Kl L(x) - KnN(x) + P(x, t) - R(x) - S(x) (2)at x

where e is the DO concentration, Cs the DO saturation value, L(x) the
carbonaceous BOD, Kl the BOD reaction rate, K2 the reaeration coefficient,
Kn the coefficient of nitrogenous oxidation, N(x) the nitrogenous BOD,
P(x, t) the algal photosynthetic oxygen production rate, R(x) the algal
respiration rate, and S(x) the benthic bacterial respiration rate. P(x, t) is a
periodic function of time, expanded in a Fourier series; the upstream diurnal
variation of DO, represented by a Fourier series, is taken as a boundary
condition.

. Because of the difficultiesrelated to the Streeter Phelps model, alternate
global models have been investigated. For instance, a model based on a
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multiple linear correlation approach has been derivedby Wangetal, (1979)
as

Y = ao + alXl + a2X2 + a:0'"3 (3)

where Y is the dissolved oxygen deficit, Xl the combined BOD loads
upstream, X2 the temperature of stream water, and X3 the stream flow.

The coefficients ao to a3 can be determined by solving the linear set of
four equations, ~Y, ~YX, ~YX2, ~YX3 where the sum ~ is taken over N
sets of data. According to the authors, such a model could be used in
stream pollution control, but it seems that field experience is still lacking.

Another approach, adopted by Whipple and Hunter (1981), is to consider
that the lack of knowledge of the Streeter Phelps coefficients is such that a
rough estimate of BOD and DO will be as significant as a so-called more
refined but illusory estimate; they use the BOD decay relationship,
independent of K2:

dL - - K L-- rdt (4)

which yields

L,
L = exp (- K t)0 r

(5)

where Lt is the BOD at time t, Lo the initial BOD, t the time of travel of
the water from the initial point, Kr the total rate of removal of BOD from
the water, including both the effect of BOD decay and the net effect of
sedimentation suspension (Kr = Kl + K3). The main advantage of this
equation is that it can be solved with a hand-held calculator.

2.2 MODELS FOR VARIOUS CONTAMINANTS

DO or BOD models can be used to represent water quality related to
various contaminants, with the contaminant concentrations as unknowns.

In particular, the random nature of the hydrological variables, like rainfall
and runoff, can be accounted for by using random mass balance models,
i.e., models with random inputs. For instance, a random dilution model
meant to study the behaviour of substances at locations downstream of the
point of complete vertical and lateral mixing, but upstream of locations
where removal and other mechanisms have a significant impact, has been
introduced by Di Toro (1984) as:

Qs QR
CT = /"\ , /"\ Cs + /"\ , /"\ CR (6)
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where CT is the downstream concentration, CR, Cs, QR, Qs respectively
the mean runoff and upstream concentrations and flow rates which are
jointly lognormally distributed. To determine the probability distribution
of CT, a more accurate numerical method has been used, and the model
has been checked for COD, lead, and phosphorus data.

As a basis for an economic model, a deterministic mass balance model
of phosphorus dilution in stream systems has been derived by Jeng et at.
(1983), who divide the stream into a series of reaches, or boxes where
dilution of phosphorus from tributaries and from point and non-point (urban,
agricultural) sources at point "A" take place according to the relationships:

Qki = Qk,i-l + Qki+ Q%i+ Qii + Q~i
P'kiQki = PL-l Qk,i-l + PXki(I - Xki)Qki + PYki(I - Yki)Q%i

+ PZki(I - Zki)Qii + PTkiQ~i
(7)

where Qk, i-I and Qki are the stream flows in the (i-I) and ith reach of the
kth tributary; Qki, Q%i,Qii, QL respectively, the sewage treatment plant
flow, the urban runoff flow, the agricultural runoff flow, the tributary flow;
P'fcithe total phosphorus concentration in the ith reach of the kth tributary
immediately downstream of point A, pL-l the total phosphorus concen-
tration at the downstream end of the (i-l)th reach of the kth tributary,
PXki, PYki>PZki the total phosphorus concentrations without treatment of
respectively point source, urban runoff, agricultural runoff, PTki the total
phosphorus concentration of tributary sources; Xki> Yki>Zki, respectively,
the fractional efficiencies of total phosphorus removal for the ith reach of
the kth tributary from municipal sewage treatment plants, and urban and
agricultural sources.

The variations of phosphorus concentration Pki in a given reach are
governed by the equation:

aPki - Qki aPki :t KkiPkiat- Aki ax
(8)

where Aki is the average cross-sectional area, Kki a first order source or
sink rate of total phosphorus, x the distance downstream of point A, and t
the time.

This model has been applied with success to a small lake system. A similar
dilution model has been introduced by Paulson et at. (1984) to study the
behaviour of dissolved metals (Cu, Cd, Fe, Mn) in a river partly influenced
by tides, distinguishing physical mixing processes from biogeochemical
reactions like adsorption or desorption. The discrepancies between the
concentration values obtained from the mass balance equation (assumed to
apply to conservative situations) and the concentrations measured in the
water body indicate the occurrence of biogeochemical reactions; for instance,
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it has been confirmed that the main stream was the siege of conservative
mixing (i.e., no significant reactions), while the estuary was an area of
significant chemical reaction.

While the models presented above are global in the sense that they
describe river reaches or even whole rivers, larger scale models are sometimes
introduced to simulate non-point source pollution at the level of a watershed.
For instance, they can consist of a classical watershed hydrological model
(giving runoff from rainfall, soil moisture, and subsurface recharge of stream
channels), where quality aspects are introduced by assigning monthly
concentrations of pollutant loads to sediments or runoff according to land
use (Hartigan et at., 1983; McTernan et at., 1981); for example, the model
will consist of the hydrological equations:

Q = (P - 0.02SfP-
2540

S = CN -25.4
qs = 11.8(qpQ)°56LS . K. C. Pr

(9)

where qp is the peak flow, qs the sediment delivered; C, K, LS, Pr are
factors accounting for cover, soil erosion, length-slope, practice; CN is the
curve number combining soil hydrological properties and land use/cover
features; q is the flow volume; P is the storm precipitation; Q is the direct
storm runoff; S is the maximum soil moisture retention. The pollutant load
is related to qs through a potency factor (ratio of pollutant mass to sediment
mass) .

Of course, such models are very global, subject to uncertainties about
hydrological parameters; they probably can be of some help in the first
approach of a non-point source pollution problem in a rather large area,
especially to help formulate smaller scale programmes.

2.3 TRANSFER FUNCTIONS

An important parameter of pollution transport, conditioning chemical
reactions among other factors, is the residence time of a pollutant in the
water body. For instance, this residence time can be the basis for management
decisions concerning the delay of intervention after an accident.

An interesting way of estimating the residence time is the transfer function
method which consists in defining the water body as a black box and
analysing the input u to output y relationship as a convolution, where h(t)
is the impulse-response of the system assumed to be linear and stationary.

yet) = r: u(-y) h(t - -y)dt
(10)
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Distribution of residence times or h(t) is the probability that a water particle
stays in the system during some time between t and t + dt; if C(t) is the
output concentration of a tracer, then

h(t) = - C(t)

r: - C(t)dt

(11)

3 LOCAL MODELS

The local or structural models, accounting for the various mechanical and
physico-chemical phenomena listed in the introduction, are based on a set
of equations describing water flow and contaminant transport. They usually
consist of three equations: conservation of total mass, conservation of
momentum, and dispersion-convection. In the particularly simple case of
one dimension, they can be written:

aA aQ
aQ + a; = q

(12)

aQ + a( uQ) + g A ah = g a( So - Sf) + q Uqat ax ax (13)

a(AC) + a(QC) = ~
(
EA ac

)
+ Si)at ax ax ax (14)

where A is the cross-sectional area of the stream, C the contaminant
concentration, E a dispersion coefficient, g the gravity, h the flow depth,
Q the flow discharge, q the lateral inflow per unit channel length entering
the river, Sf the friction slope, Si sources and sinks, So the mean bed slope,
t the time, U the mean velocity of flow, Uq the velocity component of the
lateral inflow that is parallel to the river.

The first two equations describe the hydrodynamics with or without
contaminant and the last one the transport of contaminant as a generalised
equation of contaminant mass conservation based upon an analogy of Fick's
law describing dispersion due to differential convection and turbulent
diffusion. Its form is

dm = EA dC
dt dl (15)

where dm is the quantity of matter travelling during the period dt between
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two sections of areas A at a distance dl and displaying a difference in
concentrations dC, and E being the dispersion coefficient.

For freshwater streams, the convective flux is significantly larger than the
mass flux due to longitudinal dispersion: sometimes dispersion is neglected,
and a Streeter Phelps type model may be sufficiently precise. In a tidal
river, the convective and dispersive fluxes are both significant. In an estuary,
turbulent diffusion is due mainly to tidal currents, wind-induced waves, and
friction on the boundaries; whereas, dispersion related to differential
convection is due to the topography, bends and variations in depth of the
estuary, Corio lis force, weather conditions, and salinity.

The general model is three-dimensional but, because of numerical
difficulties involved, users attempt to simplify it in 2-D or 1-D under various
assumptions subject to discussions. The sink and source terms take various
forms: for example, S; = - KC with K being a decay constant of the
pollutant.

3.1 EXAMPLES OF MODELS

3.1.1 Estuary Flow

Transport and mixing in estuaries are influenced by oscillation of flow due
to tidal action, changes in bottom topography, curvature of the estuary in
the longitudinal direction, effects of the aspect ratio in a 3-D model,
variation in phase of velocity across the cross-section, buoyancy, and salinity
effects (Allen, 1982). Usually only a few of these parameters are accounted
for by the models.

A theory of oscillatory flow has been established by Jimenez and Sullivan
(1984), based on a probabilistic formulation of the streamwise dispersion of
contaminant molecules in time dependent flow between parallel plates and
in tubes; however, a simpler and more practical model has been proposed
by Allen (1982) to describe this dispersion in steady and oscillatory turbulent
shear flow in a two-dimensional channel, based on a random walk approach:
The pollutant source is represented by a larger number of particles followed
by computer as they move through the fluid, their velocities following a
generated random distribution. The domain is divided into grid squares,
and the number of particles per grid square is the concentration: In steady
flow, the velocity has a logarithmic profile; and in oscillatory flow, it is a
superposition of a logarithmic and a sinusoidal profile. The various statistical
properties of the concentration are computed (mean, variance, skewness)
and the dispersion coefficient is defined classically as:

1 dCTx2

E=Zdt (16)

where CTx2is the variance of the longitudinal concentration distribution.
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Because of the heterogeneous distribution of concentration in a cross-
section, Wang et al. (1980) considered the general convection-dispersion
equation:

ac ac ac ac K
(

ac
)

a
(

ac
)

a
(

ac
)

-+u-+v-+w-=- K - +- K - +- K-
at ax ay az ax x ax ay Y ay az Z az

(17)

where Kx, Ky, Kz are the dispersion coefficients and u, v, w the mean
velocity components. They assume that Kx, Ky, Kz are constant, that the
only flow is in the longitudinal direction (u = w = 0), that u is constant in
the longitudinal direction (u = !(y) g (z» and zero on the boundaries (no
slip-flow condition).

But most authors will introduce a 1-D equation of dispersion by averaging
the 3-D equation over a transverse cross-section A to obtain equation (14).
For instance, Curran (1981) models various non-conservative parameters of
interest in that way, namely BOD, ammonia nitrogen (NH3-N), nitrate
nitrogen (N03- N), DO, with the following equations:

d d

(

dL
)

-(QL) =- EA- + m - kALdx dx dx (18)

d d

(

dM

)dx (QM) = dx EA dX + mM - kNAM (19)

d d

(
dN

)

AM
dx (QN) = dx EA dx + kNN + m (20)

d d

(

dD

) ( )

AL
dx(QD) = dx EA dx + kaA Ds-D - kz: - 4.57kNAM + m (21)

where m is the addition of solute per unit length of estuary, k the reaction
rate describing the depletion of s solute, ka the reaeration coefficient, D
and Ds the concentration and saturation concentration of DO, L, M, N the
respective concentrations of BOD, ammonia nitrogen, nitrate nitrogen, and
Q the upstream total freshwater discharge.

3.1.2 Stream Flow

Bujon (1983) introduced a general 3-D model, assuming that the flow
velocities decrease linearly transversally and vertically from a maximum
velocity located at the free surface and along the longitudinal flow axis:

u = Uo+ GyY + Gz (22)
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a2e a2 a2e ae ae
E -+E -+E --u-=-

x ax2 Yay2 z ay2 ax at

where Uo is the velocity on the axis, Gy and Gz linear decay coefficients
«0). Assuming a fast vertical homogenisation, this equation can be reduced
to 2-D, neglecting the y-terms.

Starting with a two-dimensional model written in an orthogonal curvilinear
coordinate system in which the x-axis follows the meander of the river, then
using the cumulative discharge to replace the transverse distance coordinate,
Lam Lau and Krishnappan (1981) represent steady, two-dimensional mixing
with a stream tube model:

ae 1 a
(

ae
)ax = Q2 aT] Dix,T]) aT]

(23)

where T] is a dimensionless cumulative discharge (ratio of the cumulative
discharge qc to the total discharge Q of the channel; T]= qjQ) and Dz the
dispersion coefficient.

One-dimensional models are frequently introduced. For instance, Medina
et al. (1981) describe the DO deficit D by the steady state equation:

d2D dD

E dx2 - u dx + Kl Lo emx - K2D = 0 (24)

where Kl is the deoxygenation constant of carbonaceous BOD, K2 the
atmospheric reaeration coefficient, Lo the remaining carbonaceous BOD

concentration at x = 0, m = (u/2E) (1 -~1 + [(4 Kl E)/LP]) for x> O.
This type of model can be extended to the unsteady state by adding a

term aD/at (Medina and Buzun, 1981). Orhon and Goneng (1982) introduce
one-dimensional equations to represent the fate of ammonia nitrogen in
rivers, taking into account both transport and biochemical conversion (i.e.,
the influence of nitrifying micro-organisms):

. a2e ae ae
D --u r =0

L ax2 ax at S

a2n an an
D --u r =0

L ax2 ax at n (25)

where e is the ammonia-nitrogen concentration, n the concentration of
nitrifying bacteria, DL the longitudinal turbulent diffusion coefficient, u the
average stream velocity, rs and rn substrate and biomass reaction rates per
unit volume (represented for instance by a Monod type kinetic equation
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an en
Tn = at= Ii = ks + e

with ,:l the maximum growth rate and ks the saturation coefficient).
For a river where the flow changes continuously due to downstream tidal

effects, Tucci and Moretti (1982) have used the group of equations (12),
(13), and (14) to represent BOD and DO; while for a small river with stable
bottom influenced by storm conditions Bedford et at. (1983) also use the
same system but consider that, due to increased cross-sectional mixing,
longitudinal dispersion can be neglected, thus reducing equation (14) to:

a(AC) + a(QC) = -yq+ Siat ax (26)

where 'Yis the contaminant concentration in the lateral inflow. Equations
(12) and (13) are solved simultaneously, yielding flows, areas, topwidths,
depths and water surface elevations for an entire flood event, and the output
of these equations is used to solve equation (14). .

An important factor of pollution behaviour is the interaction with
sediments influencing the uptake and release of dissolved and particulate
elements. Somlyody (1982a) has taken this factor into account in his study
of cadmium behaviour in a stream by using equations (12) and (13) and
adding descriptions of adsorption, coprecipitation, settling velocity, and the
probability coefficient for deposition. This study also addressed wind-induced
sediment/water interaction in a lake based on a depth-integrated transport
equation.

Onishi (1981) used a sediment/contaminant transport model, representing
seperately the transport of sediment (convection-dispersion, fall velocity and
cohesiveness, deposition on the river bed, erosion from the river bed,
sediment contributions from point/non-point sources and subsequent mixing),
the transport of dissolved contaminant (convection-dispersion, adsorption
of dissolved contaminants by both moving and stationary sediments or
desorption from the sediments into water, chemical and biological degradation
or radionuclide decay, contaminant contribution from point/non-point
sources and subsequent mixing), the transport of particulate contaminant
(convection-dispersion, adsorption of dissolved contaminants by sediment
or desorption from sediment into water, chemical and biological degradation
or radionuclide decay, deposition of particulate contaminants on the river
bed or erosion from the river bed, contaminant contribution from point and
non-point sources and subsequent mixing). The resulting equations are all
three of the same type, two-dimensional dispersion equations (integrated
vertically over the river depth) with various sink and source terms to account

for the phenomena listed above. This model has been applied to the
transport of a pesticide, Kepone, in a stream and near an estuary.
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3.2 RESOLUTION METHODS

Mathematical methods are used to solve the equations, usually simplified
in some way, to compare the mathematical results with the experimental
data, and to calibrate the model, taking into account uncertainties of the
data and the models themselves. A wide range of mathematical methods
exists; they belong to the fields of functional analysis, numerical analysis,
probability and statistics, vector and tensor analysis, and matrix algebra.

The following is a brief account of the most commonly used methods.
Analytical solutions can be handled easily on mini computers; they are
usually difficult to obtain except in some particular cases of strong simplifying
assumptions. For instance, Wang et at. (1980), using the method of Gill,
approximated the general dispersion equation with one having constant
coefficients by expanding the concentration in a kind of Taylor series and
averaging it; the classical elementary exponential solution is then obtained.

Chapman et at. (1982) introduce a semi-analytical solution by a convolution
of the elementary solution with time and a space integration by taking all
sources into account. Such a solution is also recommended by Bujon (1983),
and extended to represent the finite distance boundary effects.

Yet only numerical methods like finite differences, finite elements, or
characteristics can fully account for complex boundary conditions. The
methods of characteristics, although free from numerical difficulties like
numerical diffusion or overshoot, are cumbersome to programme; and for
practical applications, modelers usually introduce either finite difference
methods, sometimes with varying time steps and spatial grids (Lam Lau and
Krishnappan, 1981; Somlyody, 1982b; Bedford et at., 1983; West and Lin,
1983) or finite element methods like Galerkin (Curran, 1981).

3.3 THE DISPERSION COEFFICIENTS

A most important parameter of local models is the dispersion coefficient.
It is related to turbulent diffusive transport and to the local variations in
velocity, influenced by bottom friction, curvature, and shape of the river.
In estuaries, a tidal mean dispersion coefficient is usually introduced by
accounting for vertical and transverse oscillatory shears and circulation
mechanisms, like the gravitational circulation associated with saline water
intrusion, the wind stress at the water surface, the bottom topography, the
flow rate of fresh water, or the influence of the Coriolis force.

The dependence of the dispersion coefficients on these parameters is
generally unclear, and various formulas have been derived, which may differ
greatly from one another according to the assumptions used. For instance,
under the assumption of a steady turbulent velocity close to the time-average
tidal velocity over a half-tidal cycle, Harleman gives

E = 77nH5/6 0, (Ozturk,1981) (27)
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where n is the Manning's roughness coefficient, H the mean flow depth and
Ut the mean tidal velocity, while Bowden finds

E = O.29SfIOt (Ozturk,1981) (28)

and Holley uses

E = r~fI (Smith and Tukhan, 1981)

with r a function of time and space, assumed to be constant in a first
approximation, b the width at the surface, T the tidal period.

A review of the various formulas currently used for estuary conditions,
obtained either from theoretical considerations or determined empirically
from experimental results, is provided by West and Broyd (1981). This
review illustrates the wide variety of formulas owing to the diversity in
assumptions and methods of averaging the solute mass transport equation.
A major difficulty in the use of local models based on the dispersion
equation thus appears to lay with dispersion coefficients, whose dependence
on the various flow parameters is unclear, whose values can usually be
determined for given conditions by calibration, but are difficult to use for
prediction when the flow and domain conditions change. An illustration of
such difficulties is the observed difference in magnitude between computed
coefficients by means of formulas in laboratory channels and field measure-
ments of these coefficients.

4 LIMIT ATIONS OF THE MODELING

The mathematical modeling of pollution fate in surface waters is limited by
the basic adequacy of the models to represent the phenomena, the difficulties
of identifying the parameters and performing field experiments, and the
mathematical and numerical problems related to the solution of the equations.

4.1 BASIC ADEQUACY OF THE MODELS

The field models of dispersion are based on a generalisation of Taylor's
approach, which assumes the validity of a diffusion equation at the
microscopic scale, and averages it into another diffusion equation at a larger
scale under the rather strong assumptions that a sufficiently long time has
elapsed since release of a contaminant; furthermore, the cross-sectional area
is independent of x and t, the turbulence is stationary in time, and the
contaminant is passive.

Variousstudiesconcludethat a dispersionprocessis not necessarilyof
the diffusive type and that the emergence in the field of a diffusive regime
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is related to sufficient spatial averaging, conditioned by good mixing.
To cope with non-Gaussian distributions of field dispersion in the early

stages of the movement, various solutions have been suggested. For instance,
it is assumed that the dispersion is represented by a diffusion equation for
very large times only (asymptotic time) and that the transient states can be
represented at given times by a diffusion type equation with a time-
dependent diffusion coefficient (Lee and Gill, 1980) or by a delay-diffusion
equation which can be applied to oscillatory flow in estuaries (Smith, 1982).
Another approach consists of assuming that the non-Gaussian distribution
is largely due to the effects of dead zones, i.e., zones of temporary
entrapment of portions of a contaminant in bottom and side irregularities
of the stream (Nordin and Troutman, 1980; Beer and Young, 1983); the
models are then a combination of diffusion and reservoir models. Random

walk techniques are also a way to cope with the non-observation of Taylor's
assumptions, by tracking pollutant particles as they jump randomly through
the water according to some probability law (Allen, 1982); in particular,
the variation with time of the variances (12will be indicative of a diffusive
behaviour. Naturally most of the authors will seek to estimate a minimum
asymptotic time, i.e., a finite time such as when the behaviour of the
contaminant appears reasonably Gaussian.

4.2 PARAMETER IDENTIFICATION

The determination of the dispersion coefficients is usually delicate. Because
of the great variety of assumed relationships between these coefficients and
the more basic parameters, it seems illusory in practice to compute them
from experimental values of these basic parameters; their identification is
rather an inverse problem, consisting of estimations using diffusion equations.

From equation (16), we see that, when concentrations and velocities are
known, the dispersion coefficients verify a first order partial differential
equation. The problem is not mathematically well posed: small errors in C
will create severe oscillations in K and, conversely, small changes in C erase
the influence of large variations in K; furthermore, the boundary conditions
on K are usually not well known.

In general, identification will be obtained either by trial and error fitting
of measured and computed concentrations or by direct substitution of
measured concentrations into the governing equation. An illustration of the
latter case is given by West and Broyd (1981) who evaluate the gross tidal
mean dispersion coefficient KAT with the formula:

QCAT

KAT = aCAT
A T ax-

(29)
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where CAT is the tidal mean concentration, A T the tidal mean cross-sectional
area and Q the river discharge; this formula is obtained by integrating the
intertidal steady state equation.

a a
(

aCAT
)at (QCAT)= ax KATArax (30)

Field values of the transverse dispersion coefficient for various rivers are
given by Lam Lau and Krishnappan (1981), and field values of the tidal
mean dispersion coefficient for some estuaries are given by West and Broyd
(1981). In general, the experimental determination of field parameters, even
when it is more straightforward than the determination of dispersion
coefficients, as in the case of velocities or geometrical parameters of the
stream, is difficult and expensive because the heterogeneities of field
situations require a multiplicity of measurements to cover large domains
adequately. It implies the introduction of mathematical methods, like
statistical analysis, to estimate the uncertainties on the predicted concen-
trations from the uncertainties on the parameters; the probabilistic approach
of transport is then certainly useful.

As a result of experimental difficulties, the scarcity of data influences the
choice of a model. A sophisticated model can be meaningless if the number
and quality of data are not sufficient; for example, Whipple and Hunter
(1981) use a very simple BOD decay relationship instead of a DO equation
more complex but not more accurate because of the lack of data.

4.3 NUMERICAL DIFFICULTIES

Some difficulties are related to parameter identification by inverse methods
or deconvolution, like the instabilities. The non-linearity of the diffusion
equation, when density variations have to be accounted for as for salt water
intrusion, is another possible mathematical difficulty. More specific numerical
difficulties exist in the resolution of diffusion and convection equations, for
instance, numerical diffusion, smearing the computed concentration front,
or overshoot characterised by oscillations in the computed concentration
profiles. They are a subject of current research, although there are methods
of taking care of them, like the method of characteristics, but they may be
very cumbersome to operate.

The dispersion model is usually simplified in a two-dimensional model,
considering a lateral homogeneous distribution of pollutant. Yet this
approach is sometimes not justified, and three-dimensional models have to
be used (Wang et al., 1980; Somlyody, 1982b)with all the numerical
difficulties they involve.
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5 GROUNDW ATERISURF ACE WATER RELATIONSHIPS

While some consideration has been given to the pressure transfer between
surface water and groundwater, little work has been performed on mass
transfer.

The analysis of mass transfer between rivers and aquifers is made along
the following lines of thought: to consider the surface water as a boundary
condition of the hydrogeological model expressed in terms of fluxes of water
or of sources and sinks, and by simple dilution of the contaminant in the
corresponding input or output flows to transform the water flow conditions
into contaminant flow conditions of the equations of mass transfer in the
aquifers. For instance, the dispersion equation in an aquifer is written as
follows for a given species:

ae = div(Kgrade) - div(ue) + we'at (31)

with K the dispersion tensor, u the mean pore velocity, e' the concentration
of the species in the source/sink flow, e the concentration of the species in
the aquifer, w the volumetric flow rate per unit volume of porous medium
of a source/sink. This equation is coupled to the flow equation (the
hydrogeological model), derived from Darcy's law, which can be written for
the case of a confined aquifer:

div(T grad h) = S ah + wat (32)

where h is the piezometric head, T the transmissivity, S the storage coefficient
and w has been defined above.

The last equation is related to the surface water flow equation. In an
example of Pinder and Sauer (1971) of one-dimensional unsteady stream
flow in a channel of constant cross-section partially penetrating the aquifer,
the surface water flow is expressed by

av az az
z at + Vat + at = (q/ + qg)/b

av az q/ + qg av
v-+g-+v-+ -=g(S -S)al al bz "it 0 f (33)

where b is the channel width, g the gravity, I the space coordinate, q/ the
lateral inflow per unit length over the channel banks and from tributaries,
qg the flow into the channel per unit length through its wetted perimeter,
So the slope of the channel bottom, Sf the friction slope, v the flow velocity,
z the flow depth, t the time.
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The groundwater flow equation becomes

ah
div(T grad h) = S adt

qg
+ w + b + 2z (34)

and vertical flow from the aquifer to the stream is given by

~=K z+zo-h
b + 2z p /).z' (35)

where Kp is the hydraulic conductivity of the bottom sediments of the
channel, Zo the elevation of the stream bottom measured from the same
datum as h, z' the thickness of the bottom sediments along the wetted
perimeter of the channel. .

Let us quote a study along the same lines by (Price et at., 1983): to
consider the system river-aquifer as a black box and analyze the response
of the aquifer to a contaminant input from the river (or conversely) by a
statistical correlation method, for instance, or by a convolution relationship
as used in signal processing. An example of the latter is given by (Collongues
et at., 1980), who study the mass transfer of sodium chloride from the Rhine
into the underlying aquifer by considering that the system consists of a
sequence of N linear identical reservoirs defined by the equation

dR(t)
u(t) - yet)= dt

R(t) = ky (t)

(5.6)

where k is the storage coefficient, R the system reserve, u the input
concentration in the river, y the output concentration in the aquifer. The
system is globally defined by the function h verifying:

yet) = th(t - x) u(x) dx and h(t) = ~ e-tlk

and for the N reservoirs h(t) = r(~kN tN-l e-tlk where r(N) is the gamma
function.

The impulse response h of the system (i.e., k and N) is a characteristic
of the medium determined by calibration and deconvolution. The applicability
of the method is limited by the consistencyof the time series in the river
and in the aquifer used to determine the impulseresponse, by the randomness
in time of the input and by the chemicalbehaviourof the chemicalwhen
it is not conservative.
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6 CONCLUSIONS

A large variety of models exists, built around relatively few basic concepts:
either structural models trying to describe all aspects of the phenomena or
black or grey box models describing the evolution with time of one parameter
only without any physical assumption on the system. Because they rely on
many data points, the structural models are necessarily local, while the
others will be used on a global scale, sometimes as a first approach to a
given problem.

The global models rely mostly on a general mass conservation equation
without consideration for the flow characteristics and introducing bulk
coefficients to account for the various inputs or outputs; a good illustration
of these models are the Streeter Phelps equations for BOD and DO and
their various improvements.

Local models are also based on a mass conservation equation, accounting
for the movement of the contaminant particles inside the system and their
physico-chemical behaviour through various complementary relationships;
they usually consist of a system of partial differential equations describing
the flow of the receiving water and the dispersion-convection of the
contaminant within the receiving water and its interactions with the
surrounding environment like the bottom sediments. Although local at field
scales, the dispersion-convection equations are derived by a change of scale
procedure analogous to the procedure used in the study of molecular
diffusion, i.e., an. averaging in some way of very local velocities and
concentrations and the introduction of macroscopic coefficients, the disper-
sion coefficients, by a phenomenological relationship between averaged
quantities.

Global models are simple to use but of limited predictive capability,
because they do not account for the changes affecting the conditions that
prevail when their transfer functions are derived.

Local models are more complex, may be closer to reality but are not
necessarily more accurate. The governing phenomena are not always clearly
understood; the vaHdity of the equations and the meaning of the dispersion
coefficients are not well established; the solutions of the models depend on
the approximations made on the equations and boundary conditions as well
as on mathematical and numerical procedures used; the gathering of the
correct data in sufficient quantity at the proper places and according to the
appropriate time series is neither obvious nor inexpensive.

For these reasons, although modeling is certainly the only methodological
tool enabling progress in the study of contaminant behaviour in surface
water and especially allowing the transfer of knowledge from laboratory to
field, there are no automatic rules for model use. The choice of a model
depends on the advancement of the study, the number and quality of the
data, knowledge of the various mechanisms and phenomena, the time
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required for providing a solution, and the skill and competence of the
modeler. It should be remembered that although mysterious in some way,
the models are just tools and if, the output product reflects the quality of
the tool, it depends mainly on the skill of the modeler.
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