Nitrogen Cycling in Coastal Marine Environments Edited by T. H. Blackburn and J. Sørensen © 1988 SCOPE. Published by John Wiley & Sons Ltd

CHAPTER 11

Nitrate Reduction and Denitrification in Marine Sediments

ISAO KOIKE AND JAN SØRENSEN

11.1 INTRODUCTION

The deposition of organic detritus on the surface layer of marine sediments supports an elevated microbial metabolism and limits the penetration of O_2 into the sea bottom. An ideal environment for microbial NO_3^- reduction is thus created where NO_3^- can be in ample supply to substitute for O_2 in the processes of organic matter degradation.

The principal pathways of microbial NO_3^- reduction are shown in Figure 11.1 which also indicates the products of the processes, i.e. cellular organic nitrogen, NO_2^- , gaseous nitrogen (N₂O and N₂), and NH₄⁺. Cellular nitrogen is the product of assimilatory NO₃⁻ reduction which is widely distributed among algae and higher plants. Many heterotrophic microbes, including yeast and bacteria, also have a capacity for NO₃⁻ assimilation, but the inhibitory effect of NH₄⁺ on NO₃⁻ assimilation (Payne, 1973) suggests that this type of NO₃⁻ reduction plays a minor role in marine sediments, at least in the NH₄⁺-rich, coastal types. It should be mentioned, though, that Koike and Hattori (1978a) reported a significant incorporation of NO₃⁻ and NO₂⁻ into particulate nitrogen in coastal, marine sediments and further studies are needed to clarify the role of assimilatory NO₃⁻ reduction in the sea bottom.

Nitrate reduction coupled to energy metabolism is represented by a number of dissimilatory reactions in the sediments. Here, NO_3^- serves as the terminal electron-acceptor and is first reduced to NO_2^- . Except for the NO_3^- reduction in a few autotrophic bacteria, a supply of organic substrate is indispensable for the reaction. Nitrite may further be reduced to N_2O and eventually to N_2 in the process of denitrification. Most of the denitrifying bacteria are aerobes which can only utilize nitrogenous oxides if O_2 is absent (Payne, 1973). Alternatively, the NO_3^- may be reduced only to NO_2^- , as in the NO_3^- respiration by fermentative bacteria, which are either facultative or obligate anaerobes (e.g. Herbert, 1982). At least in some cases, however, the NO_2^- may be further reduced to NH_4^+ in a

Figure 11.1. Microbial NO₃⁻ reduction

respiratory process (Steenkamp and Peck, 1981) while in others the NO_2^- seems to serve as an electron sink and is reduced to NH_4^+ in a fermentative reaction. Here, reduced NADH is reoxidized by NO_2^- without a direct coupling to ATP production (Cole and Brown, 1980). The overall dissimilatory reduction of NO_3^- to NH_4^+ can be referred to as ' NO_3^- ammonification' (Figure 11.1).

In the following we shall discuss the significance of the different types of microbial NO_3^- reduction for a variety of marine sediments. We have focused on current, *in situ* assays for the processes, and on some recent observations of temporal and spatial variations of the activities. Finally we have addressed the questions of *in situ* control of the processes, and of composition of NO_3^- -reducing populations in the marine sediments.

11.2 OXYGEN AND NITRATE PROFILES IN MARINE SEDIMENTS

The zone of dissimilatory NO_3^- reduction is typically located in a layer immediately below the oxic surface layer, although significant heterogeneity may arise around faunal burrows (Sørensen, 1978b; Sørensen *et al.*, 1979). Detailed $O_2^$ profiles from marine sediments have not been available until relatively recently. In the pelagic sediments, for instance, some recent determinations have been made either with gas chromatographic techniques (Grundmanis and Murray,

1982; Sørensen and Wilson, 1984) or with polarography using microelectrodes (Reimers *et al.*, 1984). The former approach has mainly been used to illustrate the relatively deeper distribution of O_2 in pelagic sediments and to localize the site of NO_3^- reduction where O_2 is eventually depleted. The microelectrode technique was originally developed for coastal sediments in which the penetration of O_2 is usually limited to a few millimeters below the surface (Revsbech *et al.*, 1980).

Measurements of NO_3^- and NO_2^- profiles in marine sediments may also give important information both on production of NO_3^- (nitrification) and $NO_3^$ reduction. There are two major sources of NO_3^- (and NO_2^-) in the porewaters of marine sediments: one is the supply by diffusion from the overlying water and the other is nitrification at the oxic layer of the sediment. In nearshore environments, such as those of saltmarshes and embayments, the ground water may sometimes constitute a third, important source of NO_3^- (Capone and Bautista, 1985).

Figure 11.2 shows three types of NO_3^- (plus NO_2^-) profiles in pelagic sediments from the western Pacific Ocean (I. Koike, unpublished). Profiles of dissolved organic nitrogen and of dissolved primary amines are included to illustrate the availability of organic substrate in the three sediments. In the Sagami Basin (Figure 11.2 top), measurable NO_3^- was found only in the upper few centimeters of the cores, and a sharp decrease of the NO_3^- concentration from the sediment– water interface indicated that NO_3^- reduction was significant in the sediment. Both the total organic nitrogen and the primary amine concentrations were high, and the almost linear increase of NH_4^+ concentrations with depth reflected active, anaerobic decomposition of the accumulated organic material. The NO_3^- profile recorded in the Sagami Basin is also typical for many coastal sediments in which the organic content is relatively high (e.g., Nishio *et al.*, 1982).

An example of a second type of NO_3^- profile is shown for the Ogasawara Trench (Figure 11.2, center). This profile has a distinct peak of NO_3^- which is clearly a result of nitrification in the surface layer. A reduction of the $NO_3^$ occurred at the lower edge of the NO_3^- profile. The type of profile is found in pelagic sediments where local accumulation of organic material takes place (Goloway and Bender, 1982; Christensen and Rowe, 1984). This profile is also found in many coastal sediments, especially in those which have a relatively low content of organic matter, and in those which have a significant faunal community and transport of oxygenated surface water to the deeper layers (e.g. Vanderborght *et al.*, 1977; Grundmanis and Murray, 1977).

A third type of profile, in which the NO_3^- concentration steadily increases with depth, is also seen in the Western Pacific (Figure 11.2, bottom). Nitrification is here a predominant process and NO_3^- reduction is not detectable from the profiles, if the process occurs at all. In general there will be a trend from the latter type of profile found in pelagic waters to the other two, which are commonly found in coastal and estuarine waters (Bender *et al.*, 1977; Christensen and Rowe, 1984).

Figure 11.2. Vertical profiles of dissolved organic nitrogen (DON), primary amines (PAN), NO_3^- (plus NO_2^-) and NH_4^+ in marine sediments from the western Pacific Ocean: Sagami Bay at 34°57′N, 139°15′E (top), Ogasawara Trench at 28°28′N, 143°20′E (center) and western Pacific at 26°57′N, 142°55′E (bottom)

11.3 ASSAYS OF NITRATE REDUCTION AND DENITRIFICATION IN MARINE SEDIMENTS

11.3.1 Diffusion-advection models

A determination of NO_3^- reduction and denitrification in deep-sea sediments has not been possible until recently, and so far the reported rates are only from a very limited part of the world ocean. Except for the experimental approach by Sørensen et al. (1984), all estimates of the NO_3^- reduction and denitrification in deep-sea sediments have been based on models which incorporate N₂:Ar ratios or NO_3^- profiles in the sediment porewaters. Several authors (Barnes *et al.*, 1975; Wilson, 1978; Nishio et al., 1981) have thus reported an excess of N2 in the sediments, which probably reflected denitrification activity. Based on the diffusion coefficient for N₂ in the porewaters, an estimate of the areal denitrification has been obtained from N₂ profiles (Wilson, 1978; Hattori, 1983). In a different approach a one-dimensional, diffusion-advection model for $NO_3^$ has been developed to incorporate both the nitrification and NO_3^- reduction. The box model of Vanderborght and Billen (1975), which contained an oxic layer with nitrification and an underlying layer with NO3 reduction, was originally developed for coastal sediments, but was later used in deep-sea sediments with different types of nitrate profiles (Jahnke et al., 1982; Goloway and Bender, 1982; Christensen and Rowe, 1984).

Direct measurements and diagenetic modeling have given a range for the activity of NO_3^- reduction in deep-sea sediments between 0.17 mmol N m⁻² y⁻¹ (offshore sediment of the North Atlantic) and 30 mmol N m⁻² y⁻¹ (hydrothermal mound near Galapagos) (Table 11.1). There are, of course, several uncertainties about the estimates of NO_3^- reduction and denitrification from the diffusion-advection models. A close coupling between nitrification and NO₃⁻ reduction has thus been reported for coastal sediments (Koike and Hattori, 1978b; Nishio *et al.*, 1983; Jenkins and Kemp, 1984) and the possible occurrence of NO₃⁻ reduction in the oxic surface layer may lead to an understimated activity. The use of the Redfield ratio (Jahnke *et al.*, 1982; Goloway and Bender, 1982) presents another uncertainty in the models, since the elemental composition of the detritus being decomposed is unknown. Finally, in most of the diffusion Mo₃⁻ reduction is assumed to be equal to that of denitrification. As noted earlier, a considerable portion of the NO₃⁻ may be reduced to NH₄⁺ in the coastal sediments, and it is yet unknown if the process can be neglected in the deep sea.

In most of the coastal and estuarine studies the rates of NO_3^- reduction and denitrification have been estimated directly by experimental procedures. Accurate modeling of the NO_3^- profiles would also be impossible in most of the coastal sediments where the gradients are sharper and more frequently disturbed by the faunal activity.

Site	Depth (m)	Nitrate reduction $(mmol N m^{-2} y^{-1})$	Denitrification $(mmol N m^{-2} y^{-1})$		Method	References
Eastern equatorial	3310-4980	1.3		NO ₃ c	diffusion model	Bender et al. (1977)
Atlantic	3310-4980	1.3-3.0		NO_3^- d	diffusion model	Goloway and Bender (1982)
	3880-4956	0.3 - 2.2		NO ₃ c	diffusion model	Jahnke et al. (1982)
	5100		0.3	C,H, i	inhibition method	Sørensen et al. (1984)
Northeast Atlantic	1334-5275		3.8	N ₂ diff	fusion model	Wilson (1978)
Bermuda Rise	4595-4629	0.5-5.9		\tilde{NO}_3^- c	diffusion model	Goloway and Bender (1982)
Northwest Atlantic	1840-3630	4-15		NO_3^- d	diffusion model	Christensen and Rowe (1984)
	5105-5120	0.2-0.7		NO_3^- d	diffusion model	Christensen and Rowe (1984)
	5090	0		NO_3^- d	diffusion model	Christensen and Rowe (1984)
Bering Sea Basin	3650	20		NO ₃ d	diffusion model	Tsunogai et al. (1979)
Santa Barbara Basin	590		1.5	N ₂ diff	fusion model	Barnes <i>et al.</i> (1975); Hattori (1983)
Eastern equatorial Pacific	3568-3638	0.8-1.0		NO_3^- d	diffusion model	Goloway and Bender (1982)
	3116-3214	14-21		NO_3^- d	diffusion model	Goloway and Bender (1982)
	4368-4394	0.6-1.0		NO_3^- d	diffusion model	Goloway and Bender (1982)
	4843-4890	0		NO_3^- d	liffusion model	Goloway and Bender (1982)
Equatorial Pacific	3572-5867	0		NO_3^- d	liffusion model	Grundamanis and Murray (1982)
Galapagos hydrothermal	2645-2740	15-30		¹⁵ N tra	acer method	Goering and Pamatmat (1970)

Table 11.1. Rates of nitrate reduction and denitrification in deep-sea sediments

256

Nitrogen Cycling in Coastal Marine Environments

11.3.2 Direct estimates of N₂ production

Kaplan *et al.* (1979) were the first to determine N_2 production *in situ* by placing a bell jar on a marsh sediment and measuring the emission of N_2 gas. Seitzinger *et al.* (1980) further developed a similar technique by incubating undisturbed sediment in gas-tight glass chambers under a water phase of lowered N_2 content. The technique seems ideal to maintain undisturbed gradients in the sediment, but incorporates a risk of N_2 contamination from the atmosphere and requires a rather long incubation time (1–2 weeks) for a detection of steady N_2 production.

11.3.3 Use of ¹⁵N isotope techniques

In this section we shall emphasize the experimental protocol for some important ¹⁵N assays of NO₃⁻ reduction and denitrification. Goering and Pamatmat (1970) were the first to use the ¹⁵N isotope for a demonstration of denitrification in marine sediments. An excess of labeled NO₃ was added to a sediment slurry and the dissolved gases were extracted and analyzed for ¹⁵N enrichment after a period of incubation. Since this pioneer work several methodological improvements have been made, and more attention is now being paid to the effect of isotope addition on microbial activity, and to the maintenance of a natural microenvironment for the bacteria during the incubations. With current techniques the addition of 15 N-labeled NO₂ or NO₂ most often results in increased oxidant concentration and in enhancement of the microbial activity. To evaluate this effect the rate of product formation can be measured at different levels of ¹⁵N-NO₃⁻ addition and the kinetics of the process determined. By extrapolation to *in situ* concentrations the natural activity may then be approached. Such a technique was adopted in a study of denitrification in Japanese coastal sediments and in a Danish estuary (Koike et al., 1978; Oren and Blackburn, 1979). Unfortunately the use of suspensions also implies a destruction of the gradients of organic substrate distribution in the sediment. Additions of peptone, glucose and amino acids to organic-rich, coastal sediment gave no significant stimulation of the denitrification, however, and the limitation by organic substrate availability may in such cases be of minor importance (I. Koike and A. Hattori, unpublished).

A different ¹⁵N isotope assay has recently been developed for undisturbed cores of coastal and estuarine sediment. In the experimental setup shown in Figure 11.3, filtered seawater containing ¹⁵N-labeled NO_3^- is passed at a constant flow rate over the cores (Nishio *et al.*, 1982). The NO_3^- diffuses into the sediment and is reduced to, e.g., ¹⁵N-labeled nitrogen gas at the site of denitrification. When the denitrification occurs close to the sediment surface a major fraction of the labeled gas diffuses into the overlying water, and if the water phase is the predominant source of NO_3^- in the cores, the *in situ* rate of denitrification can be determined directly by the isotope enrichment of the

Nitrogen Cycling in Coastal Marine Environments

Figure 11.3. Continuous-flow system for determination of inorganic nitrogen cycling in sediments (¹⁵N isotope technique)

nitrogen gas in the effluent water. In addition, the net consumptions of O_2 and NO_3^- can be determined easily from the change of their concentrations in the effluent compared to the source water.

If nitrification in the sediment is also an important NO_3^- source in the cores, there may be an upward diffusion of unlabeled NO_3^- which causes an underestimation of both the NO_3^- reduction and the denitrification. In this case a separate set of cores may be used to determine the fraction of denitrification which is supported by NO_3^- being produced within the sediment. This particular set of cores should receive a small ¹⁵N enrichment in the NH_4^+ pool of the overlying water, but is otherwise treated as described for the NO_3^- -amended cores. The overall denitrification can then be obtained by summation of the activities in the two sets of cores (Nishio *et al.*, 1983).

As an example of simultaneous determination of several processes, a record of the inorganic nitrogen transformations in a coastal sediment is shown in Figure 11.4 (data from Nishio, 1982). In this particular sediment the denitrified nitrogen came from the overlying water and from nitrification within the sediment, in almost equal amounts. The recorded activities provide a useful insight into the sediment nitrogen cycle.

In summary, the ¹⁵N isotope technique has several advantages: (1) destruction of the microenvironments in the sediment is avoided; (2) net consumptions for both O_2 and NO_3^- are obtained, together with the rate of denitrification; (3) the source of the nitrate being denitrified can be identified; (4) the overall activity of several nitrogen transformations in the sediment can be obtained simultaneously. Some disadvantages of the technique are: (1) the incubation time is long (days)

Figure 11.4. Inorganic nitrogen cycling in Odawa Bay sediment (Japan)

when denitrifying sites are located at several centimeters of depth in the cores; (2) the assay is rather tedious and may require a mass spectrometer for a high sensitivity of ^{15}N detection.

11.3.4 Use of the C_2H_2 inhibition technique

As alternative to the ¹⁵N isotope assays, the 'acetylene inhibition technique' has been used frequently to determine denitrification. Soon after C_2H_2 was found to block the reduction of N_2O to N_2 in denitrifying bacteria (Balderston *et al.*, 1976; Yoshinari and Knowles, 1976), a simple and sensitive assay for denitrification in marine sediments was developed (Sørensen, 1978b). After injection of dissolved C_2H_2 into the cores the spontaneous accumulation of N_2O can be taken as a measure of *in situ* denitrification.

A major difficulty of the technique is to provide a homogeneous and sufficient concentration of the inhibitor in the sediment, immediately after the small aliquots of C_2H_2 -saturated water have been injected (Figure 11.5). In recent applications of the assay a final C_2H_2 concentration in the porewater of 5–10% (v:v) has been adopted (Andersen *et al.*, 1984; Jørgensen and Sørensen, 1985). The N₂O may be extracted from the sediment by either a gas stripping (Sørensen, 1978b) or a headspace extraction procedure as described by Andersen *et al.* (1984).

The highly sensitive detection of N_2O by EC (electron capture) gas chromatography allows a short incubation time (a few hours) and the assay maintains near-*in-situ* profiles of both the O_2 and NO_3^- in the cores. The dilution of the porewater and the physical disturbance seems insignificant compared to the variability among different cores. Initial comparisons of the C_2H_2 and the ¹⁵N

Figure 11.5. Injection of C_2H_2 for determination of denitrification activity in sediments (acetylene inhibition technique)

isotope techniques showed similar denitrification rates for NO_3^- -amended cores (Sørensen, 1978b), but the efficiency of the C_2H_2 blockage may be less than optimal when the denitrification takes place at low NO_3^- concentrations (Kaspar, 1982; Oremland *et al.*, 1984). The problem seems critical when the sediments show concentrations of only a few $\mu M NO_3^-$ in the denitrification zone (Kaspar, 1982; Oremland *et al.*, 1984; Jørgensen and Sørensen, 1985). It is not yet clear whether the lack of inhibition is due to particular conditions for N_2O reduction in the bacteria at limited oxidant supply, or if the presence of certain compounds in the NO_3^- -limited sediment affects the inhibitory action of C_2H_2 . It is interesting that inorganic sulfide, which may itself be inhibitory for N_2O reduction in denitrifying bacteria (Sørensen *et al.*, 1980), was shown to release the blockage of the N_2O reduction by C_2H_2 (Tam and Knowles, 1979).

A potential difficulty of the technique is also the apparent inhibition of nitrification (NH_4^+ oxidation) by C_2H_2 which was discovered after the introduction of the denitrification assay (Walter *et al.*, 1979). When sediment cores are incubated with C_2H_2 a blockage of the nitrification may result in a progressive depletion of the NO_3^- pool, and the denitrification rate should decrease if the activity is dependent on NO_3^- availability. As a result the incubation time must

often be adjusted according to the rate of NO_3^- depletion in the cores. The inhibition of nitrification may sometimes be used for a simultaneous determination of total NO_3^- reduction and denitrification (Jørgensen and Sørensen, 1985). If nitrification is excluded in the C_2H_2 -amended cores the disappearance of NO_3^- (plus NO_2^-) should give a measure of total NO_3^- reduction. In combination with the direct assay for denitrification the assay therefore provides a measure of the rate at which NO_3^- is being reduced to products other gaseous nitrogen (NH_4^+ and organic N).

The inhibitory action of C_2H_2 on the dissimilatory NO_2^- reduction to NH_4^+ (Kaspar *et al.*, 1981) has not yet been studied in bacterial cultures, and remains uncertain in terms of the actual mechanism involved. Some of the SO_4^{2-} reducers are known to possess the capacity for dissimilatory NO_3^- reduction to NH_4^+ (Steenkamp and Peck, 1981), and it has also been shown that the C_2H_2 inhibits cell proliferation in certain sulfate-reducing bacteria (Payne and Grant, 1982). However, the actual role of the SO_4^{2-} reducers in the NO_3^- reduction is unknown.

Summarizing the advantages of the 'acetylene inhibition technique', the most apparent ones are: (1) the determination of denitrification is rapid, sensitive and inexpensive; (2) the physical disturbance is kept at a minimum and near-*in-situ* profiles of NO₃⁻ can be maintained if the incubation time is short; (3) in some sediments the total NO₃⁻ reduction and the denitrification can be determined simultaneously. The major problems associated with the assay are: (1) the inhibition of N₂O reduction by C₂H₂ is sometimes incomplete, especially at low NO₃⁻ concentrations; (2) the inhibitor may affect other processes in the sediment which are important for the NO₃⁻ reduction.

11.4 VARIATION OF NITRATE REDUCTION AND DENITRIFICATION ACTIVITIES IN MARINE SEDIMENTS

A comparison of the different methodologies presently in use to estimate denitrification *in situ* is urgently needed. Koike and Hattori (1979) compared the denitrification measured by the ¹⁵N technique and the NO_3^- reduction estimated by a diffusion-advection model in sediments from the Bering Sea Shelf. They obtained almost identical rates by the two methods. Haines *et al.* (1981) later applied the C₂H₂ inhibition technique to these sediments and found activities similar to those reported by Koike and Hattori (1979). A new comparison of the ¹⁵N and C₂H₂ methodologies in undisturbed cores would be appropriate now, after the ¹⁵N isotope technique has been further developed (Nishio *et al.*, 1983).

11.4.1 Regional variation of denitrification

Even in coastal sediments the reported rates for denitrification are from a limited number of mostly temperate locations. The available data are listed in Table 11.2, showing the wide application of ¹⁵N isotope and C_2H_2 inhibition

Site	Depth (m)	Nitrate reduction $(mmol N m^{-2} d^{-1})$	Denitrification (mmol N m ^{-2} d ^{-1})	Method	References
Randers Fjored (estuarry)	0-1		0.1-1.0	C_2H_2 inhibition method	Sørensen et al. (1979)
(Denmark) Norsminde Fjord (estuary) (Denmark)	0-1		0.2	¹⁵ N tracer bottle incubation method	Oren and Blackbrun (1979)
Norsminde Fjord (estuary) (Denmark)	0-1		0-3.0	C_2H_2 inhibition method	Sørensen et al. (1979)
Great Sippewissett Marsh (USA)	0-1		0-360	¹⁵ N tracer in bottle incubation and N ₂ production measurement in bell iar	Kaplan <i>et al</i> . (1979)
Bering Sea Shelf	70-120		0.2	¹⁵ N tracer in bottle incubation method	Koike and Hattori (1979)
Alaskan Continental Shelf (USA)	1-300		0.1-0.6	C_2H_2 inhibition technique	Haines et al. (1981)
Tokyo Bay (Japan)	20-30	0.8-1.7	0.4–0.8	Continuous flow sediment- water system with 15-N tracer	Nishio et al. (1982)

Table 11.2. Rates of nitrate reduction and denitrification in estuarine and coastal sediments

Odawa Bay (Japan)	0.5-2	0-2.2	0.0-0.9	Continuous flow sediment- water system with ¹⁵ N tracer	Nishio et al. (1982)
Tama Estuary (Japan)	0.5-2	6.7-45.6	3.1-19.0	Continuous flow sediment- water system with ¹⁵ N tracer	Nishio et al. (1982)
Delaware Inlet (New Zealand)	0-1		0.3	C_2H_2 inhibition technique	Kaspar (1982)
Patuxent River Estuary (USA)	1-5		1.7-2.1	¹⁵ N tracer method using intact sediment core	Jenkins and Kemp (1984)
Providence River Estuary (USA)	5-10		0.7–2.8	N ₂ production measurement using intact sediment core	Seitzinger et al. (1984)
Narragansett Bay (USA)	5-30		0.9–2.7	N ₂ production measurement using intact sediment core	
San Francisco Bay (USA)	0-1		0-0.1	C ₂ H ₂ inhibition technique	Oremland et al. (1984)
Lendrup Strand (Denmark)	0-1		0.3-5.1	C_2H_2 inhibition technique	Andersen et al. (1984)
Norsminde Fjord (Denmark)	0-1	2-50	0.5-8.0	C_2H_2 inhibition technique	Jørgensen and Sørensen (1985)

Nitrogen Cycling in Coastal Marine Environments

techniques. The sediments show a wide range of in situ activities, but most values group around 0.1-0.5 mmol Nm⁻² d⁻¹ for shelf sediment (Koike and Hattori, 1979; Haines et al., 1981), around $0.5-2.0 \text{ mmol N m}^{-2} \text{d}^{-1}$ for coastal bays (Nishio et al., 1982; Seitzinger et al., 1984), 0–20 mmol N m⁻² d⁻¹ in estuarine sediments (Sørensen et al., 1979; Oren and Blackburn, 1979; Nishio et al., 1982; Kaspar, 1982; Jenkins and Kemp, 1984; Andersen et al., 1984; Oremland et al., 1984; Jørgensen and Sørensen, 1985) and 0-350 mmol N m⁻² d⁻¹ in saltmarsh sediment (Kaplan et al., 1979). There is obviously a trend of higher activity levels in the shallow, nearshore waters where the supplies of organic substrate and NO_{3}^{-} are generally higher, although sometimes very irregular. For instance, significant terrestrial inputs in the coastal areas are often observed by elevated NO_3^- concentrations. Tidal water movements and penetration of NO_3^- -rich ground water into the sediment may further stimulate denitrification in saltmarshes and other shallow waters (Kaplan et al., 1979; Capone and Bautista, 1985). Here the enhanced transport of NO_3^- into denitrification zones becomes increasingly important for both the regional and seasonal variation of denitrification.

The first indications of a significant reduction of NO_3^- to NH_4^+ in the coastal sediments came from additions of ¹⁵N-labeled NO₃⁻ to the uppermost centimeters which contained the natural zone of NO_3^- reduction. In most cases the results gave a slight dominance of denitrification (30-80%) over NO₃⁻ reduction to NH_4^+ (7–52%) (Koike and Hattori, 1978a; Sørensen, 1978a). The NO_3^- stimulated (potential) activities were obviously higher than those occurring in situ, and the activities at low and natural NO_3^- concentrations must be determined by one of the direct assays. Such a determination of both pathways has only been performed in a few cases, either directly by the ¹⁵N isotope technique (Nishio et al., 1982) or as the difference between total NO_3^- reduction and denitrification (Jørgensen and Sørensen, 1985). As shown in Table 11.2, the range of activities recorded for denitrification in situ is about half of that for overall NO_3^- reduction, although the actual proportioning between the two major pathways of NO_3^- reduction varies considerably in single measurements. The direct determinations of NO_3^- reduction to NH_4^+ are at present too few to evaluate its role in the marine sediments.

11.4.2 Seasonal variation of denitrification

All the data shown in Table 11.2 are from temperature regions where large seasonal fluctuations of the activities may be expected. Such a variation was already indicated from early *in-situ* studies (Kaplan *et al.*, 1979; Sørensen *et al.*, 1979), but complete seasonal records of the denitrification in coastal and estuarine sediments have not been available until recently (Sørensen, 1984; Jørgensen and Sørensen, 1985; Smith *et al.*, 1985). A correlation between the temperature and the overall denitrification pattern was observed in the

temperature marsh sediments (Kaplan *et al.*, 1979; Smith *et al.*, 1985) and may be expected in areas with a substantial NO_3^- supply throughout the year. In the estuaries, however, the input of NO_3^- often varies dramatically; the rapid depletion of NO_3^- , which can occur after a bloom of phytoplankton productivity in the spring and early summar, causes an immediate decline in the denitrification activity (Sørensen, 1984; Jørgensen and Sørensen, 1985; Smith *et al.*, 1985) and may result in a maximum of activity already in the spring or early summer when the temperature is increasing and the NO_3^- is still abundant. Figure 11.6 shows such a seasonal pattern for both the NO_3^- availability and the activities of $NO_3^$ reduction and denitrification from the inner part of a Danish estuary (redrawn

Figure 11.6. Seasonal variation of NO_3^- availability and activities of NO_3^- reduction and denitrification in Norsminde Fjord sediment (Denmark)

from Jørgensen and Sørensen, 1985). During the fall, when the temperature is still rather high, the return of a NO_3^- input with the river water may sometimes support a secondary maximum of denitrification (K. S. Jørgensen and J. Sørensen, unpublished). The seasonal variations are smaller offshore, like in the deeper waters of coastal bays, etc., where denitrification remains high throughout the summer (Seitzinger *et al.*, 1984).

11.4.3 Diel variation of denitrification

In estuaries, sunlight can support a considerable productivity of the microalgae at the sediment surface, and since the oxic-anoxic boundary is located just a

Figure 11.7. Diel variation of NO_3^- availability and activity of denitrification in Lendrup Strand sediment (Denmark)

few millimeters below the sediment surface (Revsbech *et al.*, 1980), the algal O_2 production may have a profound influence on the dissimilatory NO_3^- reduction. Figure 11.7 shows a diel pattern for the denitrification in such a shallow estuarine environment (redrawn from Andersen *et al.*, 1984). For the spring season the activity was about 2–5-fold higher in the dark than in the light. As the activity in the uppermost centimeter may account for up to 70–90% of the total denitrification in these sediments (Andersen *et al.*, 1984), it is advisable to look for diel variations of the process before an assessment of the estuarine nitrogen loss by denitrification is made. Direct determinations of such losses have so far only been based on dark incubations (Jørgensen and Sørensen, 1985; Smith *et al.*, 1985).

11.5 POPULATIONS OF NITRATE-REDUCING AND DENITRIFYING BACTERIA IN MARINE SEDIMENTS

As opposed to the significant effort which has been made to determine the significance of NO_3^- reduction and denitrification activities in marine sediments, there is only little information on, e.g., the compositions and sizes of NO_3^- reducing and denitrifying populations, their physiological responses to the changing environment, and their patterns of growth and extinction in the sediment. In the following we shall discuss some of the recent work on the dynamics and structure of the NO_3^- -reducing and denitrifying populations.

11.5.1 Most-probable-number and chemostat enrichment techniques

Enumerations of the nitrate-reducing and denitrifying bacteria in marine sediments have been few and the medium selections are probably still immature for a useful application of the most-probable-number technique. Also, the large diversity within NO_3^- -reducing and denitrifying bacteria may well have discouraged a study of their taxonomy in detail. Furthmore, it may be expected that many of the organisms are 'born' aerobes at the sediment surface and thereafter utilize their capacity for NO_3^- respiration by chance. In coastal sediments, which are physically disturbed by the burrowing fauna, the NO_3^- -reducing bacteria could include both an endogenous population of NO_3^- respiration. Finally, the NO_3^- -reducing population may also include some of the strict anaerobes like the $SO_4^2^-$ reducers which are capable of dissimilating the NO_3^- to NH_4^+ , but are unlikely to utilize the activity unless NO_3^- is introduced into the deeper sediment layers.

Plating methods often select for fast-growing organisms which are not necessarily important in the NO₃⁻ reduction and denitrification *in situ* (Dunn *et al.*, 1980). For instance, both the organic substrate composition and the carbon:NO₃⁻ ratio of the media may be important in order to determine if the predominant organisms are denitrifiers or the type which reduces NO₃⁻ to NH₄⁺. As an example of a selection on carbon-rich medium, the use of Difco nutrient

broth with NO_3^- gave a predominance of the Aeromonas–Vibrio group and, in smaller fractions, other enteric organisms and pseudomonads (Dunn *et al.*, 1980; MacFarlane and Herbert, 1982, 1984).

As an extension of this work, continuous culture enrichments may be used to find the organisms which are best adapted for particular conditions. The sediment from an estuarine mudflat was shown to produce mainly fermenting, enteric organisms when glycerol was used in a carbon-limited chemostat (Dunn *et al.*, 1980). In contrast, a predominance of oxidative pseudomonads was seen only when acetate was used as the carbon source. As a further complication, the product of NO₃⁻ dissimilation by fermenting bacteria may be either NO₂⁻ or NH₄⁺ depending on the carbon:NO₃⁻ ratio of the medium. Using isolates of both the *Aeromonas–Vibrio* group (MacFarlane and Herbert, 1982) and other enteric organisms (Herbert *et al.*, 1980), there was a complete dissimilation to NH₄⁺ only when the nitrogen was limiting growth. In contrast, the NO₂⁻ -reducing activity was not induced and NO₂⁻ accumulated in the medium when the carbon source was in short supply. Thus, even if the fermenting bacteria can dominate numerically, and contribute to the NO₃⁻ reduction in the sediments, they do not always express their NO₃⁻-reducing capacity.

11.5.2 'Potential' for nitrate reduction and denitrification

Both denitrification and reduction of NO_3^- to NH_4^+ were shown to occur immediately after the addition of excess NO_3^- to oxidized surface sediment (Sørensen, 1978a). However, in the underlying sediment denitrification showed a time lag which was probably related to the absence of NO_3^- in situ in the deeper layers. The spontaneous reduction of NO_3^- to NH_4^+ in the deeper layers of the sediment demonstrated that the organisms involved in this reaction were probably fermenters or sulfate reducers, which had an active metabolism *in situ* and possessed a constitutive enzyme system for NO_3^- reduction.

As the reduction of NO_3^- may occur along two pathways, it would be of considerable interest to compare the kinetics of NO_3^- and NO_2^- reductions in the organisms which are likely to be involved *in situ*. Smith *et al.* (1982) showed that the NO_3^- reduction to NH_4^+ in marsh sediment decreased from 52% to 4% of the total when the NO_3^- availability increased. King and Nedwell (1985) showed that as the NO_3^- concentration was increased in an estuarine sediment, denitrification became dominant at the expense of the NO_3^- reduction to NH_4^+ . It seems unlikely that the shifts were due to kinetic competition for NO_3^- , since the concentrations were rather high (0.2–2 mM) in the slurries, but a likely explanation was that the fermenters decreased their demand for the electron sink (NO_2^- reduction to NH_4^+) as they shifted towards the energy-favorable respiration with NO_3^- . The partitioning between the two pathways apparently depends not only on the composition of populations and their actual enzyme contents, but also on the reaction kinetics and the preference for a maximum of energy yield during NO_3^- reduction.

The availability of organic substrate is not usually considered to be important in the regulation of NO_3^- reduction in coastal sediments. In short-term experiments, where significant cell proliferation is avoided, a stimulation of the NO_3^- reduction by substrate applications would seem to be a useful measure of the regulation by organic matter *in situ*. Such an assay was introduced by Haines *et al.* (1981), who measured denitrification in a number of substrate-amended shelf sediments. Certain sediments were almost unaffected, while others were stimulated by a factor of 3–4 and were apparently under true kinetic control. Similar results have recently been obtained in organic-rich, coastal sediments (K. S. Jørgensen, unpublished; I. Koike and A. Hattori, unpublished).

Little is known about the temporal changes of NO_3^- -reducing populations in the sediments. Data from the estuary, which were presented by the seasonal activity pattern in Figure 11.6, may serve to illustrate such a dynamic change in the NO_3^- -reducing community. Figure 11.8 shows a seasonal record for the 'potential' activities of NO_3^- reduction and denitrification in the sediment as measured in NO_3^- -amended slurries (J. Sørensen and F. Bertelsen, unpublished). Throughout the year the sampling depth was adjusted to include the whole NO_3^- containing surface zone in which the bacteria were assumed to be active *in situ*. Constant temperature (about 20 °C) and application of NO_3^- (1 mM) were used each time. The results indicate a rapid decrease of the content of denitrifying enzymes in the summer when both the NO_3^- availability and the *in situ* activity

Figure 11.8. Seasonal variation of 'potential' activity of NO_3^- reduction and denitrification in Norsminde Fjord sediment (Denmark)

Nitrogen Cycling in Coastal Marine Environments

were low (Figure 11.6) and an increase during the subsequent fall and winter. The 'potential' for denitrification constituted a large fraction of the overall 'potential' for NO_3^- reduction. Since the assay was run at room temperature there could be a difficulty of interpreting the data if the sediment also contained a population of denitrifiers with a low-temperature optimum. Such a cold-adapted population could not be demonstrated in the sediment, however. Even at the end of the winter there was a steady increase of the 'potential' activity in the temperature range from 5 to 30 °C (J. Sørensen, unpublished).

The pattern may be different if the NO₃⁻ supply remains significant throughout the season. For the upper decimeter of the saltmarsh, which had a high *in situ* activity (Kaplan *et al.*, 1979), the 'potential' denitrification measured at room temperature (20 °C) was also highest in the summer (Kaplan *et al.*, 1977). However, when measured at low temperature (5 °C), the 'potential' was relatively low, independent of the season. The results indicated the presence of both a coldadapted population, which dominated the modest denitrification in the marsh in the winter, and a population with a higher temperature optimum, which was responsible for the high activity during the summer.

11.6 CONCLUSIONS

In marine sediments, which are anoxic a few millimeters or centimeters the surface, the microbial NO_3^- reduction occurs along two major pathways: one is the process of denitrification leading to production of N_2O and N_2 , the other is an alternative route to NH_4^+ which is sometimes termed 'dissimilatory NO_3^- reduction to NH_4^+ ', but may also be appropriately referred to as ' NO_3^- ammonification'.

During recent years a number of direct assays have been developed for *in situ* measurements of both these processes. Two of them, an ¹⁵N isotope technique and the C_2H_2 inhibition technique, have found wide application in the coastal environment where significant variations of the activity may be found in space and time. Both techniques can be used without a major disturbance of the sediment samples, and both have major advantages compared to other techniques in terms of sensitivity. Among the difficulties to be considered, though, is the requirement for a long incubation time using the ¹⁵N technique and the apparent inefficiency at low NO₃⁻ concentrations using the acetylene inhibition technique.

In coastal sediments the denitrification accounts for a very variable fraction of the overall NO_3^- reduction, and it seems that the alternative pathway to NH_4^+ may be equally or sometimes more important. Much effort has been made to explain the porportioning between the two processes *in situ*; apart from the composition of the NO_3^- -reducing population, the likely control factors seem to include the actual NO_3^- concentration *in situ* and the carbon: NO_3^- ratio of the sediment. The change of NO_3^- availability seems to be a key factor for the

seasonal control of NO_3^- reduction in the coastal sediments. In shallow waters the diel denitrification pattern may be controlled by a release of O_2 in benthic algae at the sediment-water interface.

A structural description of the NO_3^- -reducing community may be obtained by an assay of the 'potential' activity (total enzyme content) for NO_3^- reduction and denitrification in the sediments. The seasonal fluctuations of the 'potential' denitrification observed in estuarine sediments are probably related to similar changes in NO_3^- availability and activity *in situ*.

REFERENCES

- Andersen, T. K., Jensen, M. H., and Sørensen, J. (1984). Diurnal variation of nitrogen cycling in coastal marine sediments. I. Denitrification. *Mar. Biol.*, 83, 171-6.
- Balderston, W. L., Sherr, B., and Payne, W. J. (1976). Blockage by acetylene of nitrous oxide reduction in *Pseudomonas perfectomarinus*. Appl. Environ. Microbiol., 31, 504–8.
- Barnes, R. O., Bertine, K. K., and Goldberg, E. D. (1975). N₂:Ar, nitrification and denitrification in southern California borderland basin sediments. *Limnol. Oceanogr.*, 20, 962–70.
- Bender, M. L., Ganning, K. A., Froelich, P. N., Heath, G. R., and Maynard, V. (1977). Interstitial nitrate profiles and oxidation of sedimentary organic matter in the eastern equatorial Atlantic. *Science*, 198, 605–9.
- Capone, D. G., and Bautista, M. (1985). Direct evidence for a groundwater source for nitrate in nearshore marine sediments. *Nature*, **313**, 143-7.
- Christensen, J. P., and Rowe, G. T. (1984). Nitrification and oxygen consumption in northwest Atlantic deep-sea sediments. J. Mar. Res., 42, 1099-1116.
- Cole, J. A., and Brown, C. M. (1980). Nitrite reduction to ammonia by fermentative bacteria: a short circuit in the biological nitrogen cycle. *FEMS Microbiol. Lett.*, 7, 65–72.
- Dunn, G. M., Wardell, J. N., Herbert, R. A., and Brown, C. M. (1980). Enrichment, enumeration and characterization of nitrate-reducing bacteria present in sediments of the River Tay Estuary. Proc. R. Soc. Edin., 78B, 47–56.
- Goering, G. G., and Pamatmat, M. M. (1970). Denitrification in sediments of the sea off Peru. Invest. Pesq., 35, 233-42.
- Goloway, F., and Bender, M. (1982). Diagenetic models of interstitial nitrate profiles in deep sea suboxic sediments. *Limnol. Oceanogr.*, 27, 624–38.
- Grundmanis, V., and Murray, J. W. (1977). Nitrification and denitrification in marine sediments from Puget Sound. *Limnol. Oceanogr.*, 22, 804–13.
- Grundmanis, V., and Murray, J. W. (1982). Aerobic respiration in pelagic marine sediments. *Geochim. Cosmochim. Acta*, **46**, 1101-20.
- Haines, J. R., Atlas, R. M., Griffiths, R. P., and Morita, R. Y. (1981). Denitrification and nitrogen fixation in Alaskan continental shelf sediments. *Appl. Environ. Microbiol.*, 41, 412–21.
- Hattori, A. (1983). Denitrification and dissimilatory nitrate reduction. In: Carpenter, E. J., and Capone, D. G. (eds), *Nitrogen in the Marine Environment*, pp. 191–232. Academic Press, New York.
- Herbert, R. A. (1982). Nitrate dissimilation in marine and estuarine sediments. In: Nedwell, D. B., and Brown, C. M. (eds), Sediment Microbiology, pp. 53-71, Academic Press, London.

Herbert, R. A., Dunn, G. M., and Brown, C. M. (1980). The physiology of nitrate dissimilating bacteria from the Tay Estuary. *Proc. R. Soc. Edin.*, **78B**, 79–87.

Jahnke, R. A., Emerson, S. R., and Murray, J. W. (1982). A model of oxygen reduction, denitrification, and organic matter mineralization in marine sediments. *Limnol. Oceanogr.*, 27, 610–23.

Jenkins, M. C., and Kemp, W. M. (1984). The coupling of nitrification and denitrification in two estuarine sediments. *Limnol. Oceanogr.*, 29, 609–19.

- Jørgensen, B. B., and Sørensen, J. (1985). Seasonal cycles of O_2 , NO_3^- and SO_4^{2-} reduction in estuarine sediments: the significance of an NO_3 reduction maximum in spring. *Mar. Ecol. Prog. Ser.*, **24**, 65–74.
- Kaplan, W. A., Teal, J. M., and Valiela, I. (1977). Denitrification in saltmarsh sediments: evidence for seasonal temperature selection among populations of denitrifiers. *Microbiol Ecol.*, 3, 193–204.
- Kaplan, W. A., Valiela, I., and Teal, J. M. (1979). Denitrification in a marsh ecosystem. Limnol. Oceanogr., 24, 726–34.
- Kaspar, H. F. (1982). Denitrification in marine sediment: measurement of capacity and estimate of in situ rate. *Appl. Environ. Microbiol.*, **43**, 522-527.
- Kaspar, H. F., Tiedje, J. M., and Firestone, R. B. (1981). Denitrification and dissimilatory nitrate reduction to ammonium by digested sludge. Can. J. Microbiol., 27, 878–85.
- King, D., and Nedwell, D. B. (1985). The influence of nitrate concentration upon the endproducts of nitrate dissimilation by bacteria in anaerobic salt marsh sediment. *FEMS Microbiol. Lett.*, **31**, 23–8.
- Koike, I., and Hattori, A. (1978a). Denitrification and ammonia formation in anaerobic coastal sediments. *Appl. Environ. Microbiol.*, **35**, 278–82.
- Koike, I., and Hattori, A. (1978b). Simultaneous determinations of nitrification and nitrate reduction in coastal sediments by a 15-N dilution technique. *App. Environ. Microbiol.*, 35, 853–7.
- Koike, I., and Hattori, A. (1979). Estimates of denitrification in sediments of the Bering Sea shelf. *Deep-Sea Res.*, **26**, 409–15.
- Koike, I., Hattori, A., and Goering, J. J. (1978). Controlled ecosystem pollution experiment: effect of mercury on enclosed water column. VI. Denitrification by marine bacteria. *Mar. Sci. Commun.*, 4, 1–12.
- MacFarlane, G. T., and Herbert, R. A. (1982). Nitrate dissimilation by *Vibrio* spp. isolated from estuarine sediments. *J. Gen. Microbiol.*, **128**, 2463–8.
- MacFarlane, G. T., and Herbert, R. A. (1984). Dissimilatory nitrate reduction and nitrification in estuarine sediments. J. Gen. Microbiol., 130, 2301-8.
- Nishio, T. (1982). Nitrogen cycling in coastal and estuarine sediments with special reference to nitrate reduction, denitrification and nitrification. Doctoral dissertation, University of Tokyo, Tokyo, pp. 115.
- Nishio, T., Koike, I., and Hattori, A. (1981). N₂/Ar and denitrification in Tama estuary sediments: *Geomicrobiol. J.*, **2**, 193–209.

Nishio, T., Koike, I., and Hattori, A. (1982). Denitrification, nitrate reduction, and oxygen consumption in coastal and estuarine sediments. *Appl. Environ. Microboil.*, 43, 648–53.

Nishio, T., Koike, I., and Hattori, A. (1983). Estimates of denitrification and nitrification in coastal and estuarine sediments. *Appl. Environ. Microboil.*, **45**, 444–50.

- Oremland, R. S., Umberger, C., Culbertson, C. W., and Smith, R. L. (1984). Denitrification in San Francisco Bay sediments. *Appl. Environ. Microbiol.*, **47**, 1106–12.
- Oren, A., and Blackburn, T. H. (1979). Estimation of sediment denitrification rates at *in situ* nitrate concentration. *Appl. Environ. Microbiol.*, **37**, 174–6.
- Payne, W. J. (1973). Reduction of nitrogenous oxides by micro-organisms. *Bacteriol. Rev.*, 37, 409–52.

- Payne, W. J., and Grant, M. A. (1982). Influence of acetylene on growth of sulfate-reducing bacteria. Appl. Environ. Microbiol., 43, 727–30.
- Reimers, C. E., Kalhorn, S., Emerson, S. R., and Nealson, K. H. (1984). Oxygen consumption rates in pelagic sediments from the Central Pacific: first estimates from microelectrode profiles. *Geochim. Cosmochim. Acta*, 48, 903-10.
- Revsbech, N. P., Sørensen, J., and Blackburn, T. H. (1980). Distribution of oxygen in marine sediments measured with microelectrodes. *Limnol. Oceanogr.*, 25, 403-11.
- Seitzinger, S., Nixon, S. W., Pilson, M. E., and Burke, S. (1980). Denitrification and N₂O production in nearshore marine sediments. *Geochim. Cosmochim. Acta*, 44, 1853–60.
- Seitzinger, S. P., Nixon, S. W., and Pilson, M. E. (1984). Denitrification and nitrous oxide production in a coastal marine ecosystem. *Limnol. Oceanogr.*, 29, 73–83.
- Smith, C. J., De Laune, R. D., and Patrick, W. H. Jr (1982). Nitrate reduction in Spartina alterniflora marsh soil. Soil. Soc. Am. J., 46, 748-50.
- Smith, C. J., De Laune, R. D., and Patrick, W. H. Jr (1985). Fate of riverine nitrate entering an estuary: I. Denitrification and nitrogen burial. *Estuarine*, 8, 15–21.
- Steenkamp, D. J., and Peck, H. D. Jr (1981). Proton translocation associated with nitrite respiration in *Desulfovibrio desulfuricans*. J. Biol. Chem., 256, 5450–8.
- Sørensen, J. (1978a). Capacity for denitrification and reduction of nitrate to ammonia in a coastal marine sediment. Appl. Environ. Microbiol., 35, 301–5.
- Sørensen, J. (1978b). Denitrification rates in a marine sediment as measured by the acetylene inhibition technique. Appl. Environ. Microbiol., 36, 139–43.
- Sørensen, J. (1984). Seasonal variation and control of oxygen, nitrate ans sulfate respiration in coastal marine sediments. In: Klug, M. S., and Reddy, C. A. (eds), *Current Perspectives in Microbial Ecology*, pp. 447–53. Am. Soc. Microbiol., Washington, DC.
- Sørensen, J., and Wilson, T. R. S. (1984). A headspace technique for oxygen measurements in deep-sea sediment cores. *Limnol. Oceanogr.*, 29, 650–2.
- Sørensen, J., Jørgensen, B. B., and Revsbech, N. P. (1979). A comparison of oxygen, nitrate, and sulfate respiration in a coastal marine sediment. *Microbial Ecol.*, 5, 105–15.
- Sørensen, J., Tiedje, V. M., and Firestone, R. B. (1980). Inhibition by sulfide of nitric and nitrous oxide reduction by denitrifying *Pseudomonas fluorescens. Appl. Environ. Microbiol.*, 39, 105-8.
- Sørensen, J., Hydes, D. J., and Wilson, T. R. S. (1984). Denitrification in a deep-sea sediment core from the eastern Equatorial Atlantic. *Limnol. Oceanogr.*, 29, 653-7.
- Tam, T. Y., and Knowles, R. (1979). Effects of sulfide and acetylene on nitrous oxide reduction by soil and *Pseudomonas aeruginosa. Can. J. Microbiol.*, 25, 1133–8.
- Tsunogai, S., Kusakabe, M., Iizimi, H., Koike, I., and Hattori, A. (1979). Hydrographic features of the deep-water of the Bering Sea: the sea of silica. *Deep-Sea Res.*, 26, 641-59.
- Vanderborght, J.-P., and Billen, G. (1975). Vertical distribution of nitrate concentration in interstitial water of marine sediments with nitrification and denitrification. *Limnol. Oceanogr.*, 20, 953-61.
- Vanderborght, J.-P., Wollast, R., and Billen, G. (1977). Kinetic models of diagenesis in disturbed sediments. Part 2. Nitrogen diagenesis. *Limnol. Oceanogr.*, 22, 794–803.
- Walter, H. M., Keeney, D. R., and Fillery, I. R. (1979). Inhibition of nitrification by acetylene. Soil Sci. Soc. Am. J., 43, 195-6.
- Wilson, T. R. S. (1978). Evidence for denitrification in aerobic pelagic sediments. Nature (Lond.), 274, 354–6.
- Yoshinari, T., and Knowles, R. (1976). Acetylene inhibition of nitrous oxide reduction by denitrifying bacteria. *Biochem. Biophys. Res. Commun.*, 69, 705–10.

A. L. Mildar Mild M. A. 196 S. Altanization: A subject of a Market Science Science Sciences, and the second science of the second

A suspective to the formation that the basis of the first space of the first space of the space of the space control operations of the space of t

האין על היידיים הגולה איינים איינים. עדרי מודרים איינים א מערך איינים דיינים איינים א

of all in the south hardware by south

(a) A set of the se

LARRENT FOR CONTRACT AND ADDRESS AND ADDRESS AND ADDRESS ADDR ADDRESS ADDRES ADDRESS ADDRES

(2) C. C. C. M. S. CARLELING, M. J. C. C. J. K. CHARLEN, M. S. M. S